Skip to main content

PQ.V.ALU.E: Post-quantum RISC-V Custom ALU Extensions on Dilithium and Kyber

  • Conference paper
  • First Online:
Smart Card Research and Advanced Applications (CARDIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14530))

  • 124 Accesses

Abstract

This paper explores the challenges and potential solutions of implementing the recommended upcoming post-quantum cryptography standards (the CRYSTALS-Dilithium and CRYSTALS-Kyber algorithms) on resource constrained devices. The high computational cost of polynomial operations, fundamental to cryptography based on ideal lattices, presents significant challenges in an efficient implementation. This paper proposes a hardware/software co-design strategy using RISC-V extensions to optimize resource utilization and speed up the number-theoretic transformations (NTTs). The primary contributions include a lightweight custom arithmetic logic unit (ALU), integrated into a 4-stage pipeline 32-bit RISC-V processor. This ALU is tailored towards the NTT computations and supports modular arithmetic as well as NTT butterfly operations. Furthermore, an extension to the RISC-V instruction set is introduced, with ten new instructions accessing the custom ALU to perform the necessary operations. The new instructions reduce the cycle count of the Kyber and Dilithium NTTs by more than 80% compared to optimized assembly, while being more lightweight than other works that exist in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 23 February 2024

    A correction has been published.

References

  1. Aikata, A., Mert, A.C., Imran, M., Pagliarini, S., Roy, S.S.: KaLi: a crystal for post-quantum security using Kyber and Dilithium. IEEE Trans. Circ. Syst. I: Regular Pap. 1–12 (2022)

    Google Scholar 

  2. Bai, S., et al.: CRYSTALS-Dilithium algorithm specifications and supporting documentation (Version 3.1) (2021). https://pq-crystals.org/dilithium/

  3. Banerjee, U., Ukyab, T.S., Chandrakasan, A.P.: Sapphire: a configurable crypto-processor for post-quantum lattice-based protocols. IACR Trans. Cryptogr. Hardw. Embed. Syst. 4, 17–61 (2019)

    Article  Google Scholar 

  4. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_24

    Chapter  Google Scholar 

  5. Beckwith, L., Nguyen, D.T., Gaj, K.: High-performance hardware implementation of crystals-Dilithium. In: 2021 International Conference on Field-Programmable Technology (ICFPT), pp. 1–10 (2021)

    Google Scholar 

  6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Building power analysis resistant implementations of Keccak. In: Second SHA-3 Candidate Conference, vol. 142 (2010)

    Google Scholar 

  7. Bisheh-Niasar, M., Azarderakhsh, R., Mozaffari-Kermani, M.: A monolithic hardware implementation of Kyber: comparing apples to apples in PQC candidates. In: Longa, P., Ràfols, C. (eds.) LATINCRYPT 2021. LNCS, vol. 12912, pp. 108–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88238-9_6

    Chapter  Google Scholar 

  8. Fritzmann, T., Sigl, G., Sepúlveda, J.: RISQ-V: tightly coupled RISC-V accelerators for post-quantum cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 239–280 (2020)

    Article  Google Scholar 

  9. Gautschi, M., et al.: Near-threshold RISC-V core with DSP extensions for scalable IoT endpoint devices. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(10), 2700–2713 (2017)

    Google Scholar 

  10. Greconici, D.O.C., Kannwischer, M.J., Sprenkels, A.: Compact Dilithium implementations on cortex-M3 and cortex-M4. IACR TCHES 2021(1), 1–24 (2021). https://doi.org/10.46586/tches.v2021.i1.1-24, https://tches.iacr.org/index.php/TCHES/article/view/8725

  11. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 67–82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_5

    Chapter  Google Scholar 

  12. Gupta, N., Jati, A., Chattopadhyay, A., Jha, G.: Lightweight hardware accelerator for post-quantum digital signature CRYSTALS-Dilithium. IEEE Trans. Circ. Syst. I: Regular Pap. 1–10 (2023)

    Google Scholar 

  13. Kannwischer, M.J., Petri, R., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: post-quantum crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4

  14. Karl, P., Schupp, J., Fritzmann, T., Sigl, G.: Post-quantum signatures on RISC-V with hardware acceleration. ACM Trans. Embed. Comput. Syst. (2023)

    Google Scholar 

  15. Land, G., Sasdrich, P., Güneysu, T.: A hard crystal - implementing Dilithium on reconfigurable hardware. In: Grosso, V., Pöppelmann, T. (eds.) CARDIS 2021. LNCS, vol. 13173, pp. 210–230. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97348-3_12

    Chapter  Google Scholar 

  16. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

  17. Nannipieri, P., Di Matteo, S., Zulberti, L., Albicocchi, F., Saponara, S., Fanucci, L.: A RISC-V post quantum cryptography instruction set extension for number theoretic transform to speed-up CRYSTALS algorithms. IEEE Access 9, 150798–150808 (2021)

    Article  Google Scholar 

  18. National Institute of Standards and Technology: Post-Quantum Cryptography Standardization. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

  19. Ni, Z., Khalid, A., e Shahwar Kundi, D., O’Neill, M., Liu, W.: Efficient pipelining exploration for a high-performance CRYSTALS-Kyber accelerator. Cryptology ePrint Archive, Paper 2022/1093 (2022)

    Google Scholar 

  20. Ricci, S., et al.: Implementing CRYSTALS-Dilithium signature scheme on FPGAs. ARES 21, Association for Computing Machinery, New York (2021)

    Google Scholar 

  21. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

  22. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press (1994)

    Google Scholar 

  23. Stoffelen, K.: Efficient cryptography on the RISC-V architecture. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 323–340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_16

    Chapter  Google Scholar 

  24. Xing, Y., Li, S.: A compact hardware implementation of CCA-secure key exchange mechanism CRYSTALS-KYBER on FPGA. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2), 328–356 (2021)

    Article  Google Scholar 

  25. Zhao, C., et al.: A compact and high-performance hardware architecture for CRYSTALS-Dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 270–295 (2021)

    Article  Google Scholar 

  26. Zhou, Z., He, D., Liu, Z., Luo, M., Choo, K.K.R.: A software/hardware co-design of crystals-Dilithium signature scheme. ACM Trans. Reconfigurable Technol. Syst. 14(2) (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantina Miteloudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miteloudi, K., Bos, J.W., Bronchain, O., Fay, B., Renes, J. (2024). PQ.V.ALU.E: Post-quantum RISC-V Custom ALU Extensions on Dilithium and Kyber. In: Bhasin, S., Roche, T. (eds) Smart Card Research and Advanced Applications. CARDIS 2023. Lecture Notes in Computer Science, vol 14530. Springer, Cham. https://doi.org/10.1007/978-3-031-54409-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54409-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54408-8

  • Online ISBN: 978-3-031-54409-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics