Skip to main content

Effectiveness of Different Machine Learning Algorithms in Road Extraction from UAV-Based Point Cloud

  • Conference paper
  • First Online:
Innovations in Smart Cities Applications Volume 7 (SCA 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 938))

  • 103 Accesses

Abstract

This study presents the evaluation of seven different machine learning (ML) models to classify road surface from point cloud. The study begins with converting two-dimensional images collected from unmanned aerial vehicles (UAV) flights to three-dimensional (3D) point cloud. Seven different ML models, namely, Generalized Linear Model, Linear Discriminant Analysis, Robust Linear Discriminant Analysis, Random Forest, Support Vector Machine with Linear Kemel, Linear eXtreme Gradient Bossting, and eXtreme Gradient Boosting, were developed under different training samples. Finally, road surface were classified from 3D point cloud using developed ML models. To assess the performance of the ML models, manually extracted road surfaces were compared with the ones obtained from ML models. Generalized Linear Model produces the most accurate classification results in a shorter processing time. On the other hand, Linear eXtreme Gradient Boosting and eXtreme Gradient Boosting models produce less accurate road classification in a longer processing time. The classification accuracies of other ML models are between these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biçici, S., Zeybek, M.: An approach for the automated extraction of road surface distress from a uav-derived point cloud. Autom. Constr. 122, 103475 (2021)

    Article  Google Scholar 

  2. Biçici, S., Zeybek, M.: Effectiveness of training sample and features for random forest on road extraction from unmanned aerial vehicle-based point cloud. Transp. Res. Rec. 2675(12), 401–418 (2021)

    Article  Google Scholar 

  3. Zeybek, M., Biçici, S.: Road surface and inventory extraction from mobile lidar point cloud using iterative piecewise linear model. Meas. Sci. Technol. 34(5), 055204 (2023)

    Article  Google Scholar 

  4. Kavzoglu, T., Sen, Y.E., Cetin, M.: Mapping urban road infrastructure using remotely sensed images. Int. J. Remote Sens. 30(7), 1759–1769 (2009)

    Article  Google Scholar 

  5. Saad, A.M., Tahar, K.N.: Identification of rut and pothole by using multirotor unmanned aerial vehicle (UAV). Measurement 137, 647–654 (2019)

    Article  Google Scholar 

  6. Tan, Y., Li, Y.: UAV photogrammetry-based 3d road distress detection. ISPRS Int. J. Geo Inf. 8(9), 409 (2019)

    Article  Google Scholar 

  7. Abburu, S., Golla, S.B.: Satellite image classification methods and techniques: a review. Int. J. Comput. Appl. 119(8), 20–25 (2015)

    Google Scholar 

  8. Lin, Y., Saripalli, S.: Road detection from aerial imagery. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3588–3593 (2012)

    Google Scholar 

  9. Yadav, M., Lohani, B., Singh, A.: Road surface detection from mobile lidar data. ISPRS Ann. Photogram. Remote Sens. Spat. Inf. Sci. 4, 95–101 (2018)

    Article  Google Scholar 

  10. Yadav, M., Singh, A.K.: Rural road surface extraction using mobile lidar point cloud data. J. Indian Soc. Remote Sens. 46(4), 531–538 (2018)

    Article  Google Scholar 

  11. Akturk, E., Altunel, A.O.: Accuracy assessment of a low-cost UAV derived digital elevation model (dem) in a highly broken and vegetated terrain. Measurement 136, 382–386 (2019)

    Article  Google Scholar 

  12. Kotsiantis, S.B., Zaharakis, I.D., Pintelas, P.E.: Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26(3), 159–190 (2006)

    Article  Google Scholar 

  13. Novaković, J.D., Veljović, A., Ilić, S.S., Papić, Ž, Tomović, M.: Evaluation of classification models in machine learning. Theory Appl. Math. Comput. Sci. 7(1), 39 (2017)

    MathSciNet  Google Scholar 

  14. Zeybek, M., Biçici, S.: Investigation of landslide-based road surface deformation in mountainous areas with single period UAV data. Geocarto Int. 37, 1–27 (2022)

    Google Scholar 

  15. Carrivick, J.L., Smith, M.W., Quincey, D.J.: Structure from Motion in the Geosciences. John Wiley & Sons, Hoboken (2016)

    Book  Google Scholar 

  16. Wang, J.-A., Ma, H.-T., Wang, C.-M., He, Y.-J.: Fast 3d reconstruction method based on UAV photography. ETRI J. 40(6), 788–793 (2018)

    Article  Google Scholar 

  17. Colditz, R.R.: An evaluation of different training sample allocation schemes for discrete and continuous land cover classification using decision tree-based algorithms. Remote Sens. 7(8), 9655–9681 (2015)

    Article  Google Scholar 

  18. Millard, K., Richardson, M.: On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping. Remote Sens. 7(7), 8489–8515 (2015)

    Article  Google Scholar 

  19. Kuhn, M.: Caret: classification and regression training. Astrophysics Source Code Library, 1505 (2015)

    Google Scholar 

  20. Knoblauch, K., Maloney, L.T.: Estimating classification images with generalized linear and additive models. J. Vis. 8(16), 10–10 (2008)

    Article  Google Scholar 

  21. Miller, J., Franklin, J.: Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence. Ecol. Model. 157(2–3), 227–247 (2002)

    Article  Google Scholar 

  22. Feldesman, M.R.: Classification trees as an alternative to linear discriminant analysis. Am. J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropologists 119(3), 257–275 (2002)

    Article  Google Scholar 

  23. Croux, C., Filzmoser, P., Joossens, K.: Classification efficiencies for robust linear discriminant analysis. Statistica Sinica 581–599 (2008)

    Google Scholar 

  24. Todorov, V., Pires, A.M.: Comparative performance of several robust linear discriminant analysis methods. REVSTAT-Stat. J. 5(1), 63–83 (2007)

    MathSciNet  Google Scholar 

  25. Speiser, J.L., Miller, M.E., Tooze, J., Ip, E.: A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 134, 93–101 (2019)

    Article  Google Scholar 

  26. Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., Lopez, A.: A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408, 189–215 (2020)

    Article  Google Scholar 

  27. Gunn, S.R., et al.: Support vector machines for classification and regression. ISIS Techn. Rep. 14(1), 5–16 (1998)

    Google Scholar 

  28. Bansal, A., Kaur, S.: Extreme gradient boosting based tuning for classification in intrusion detection systems. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T. (eds.) ICACDS 2018. CCIS, vol. 905, pp. 372–380. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-1810-8_37

    Chapter  Google Scholar 

  29. Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Wolff, E.: Very high resolution object-based land use-land cover urban classification using extreme gradient boosting. IEEE Geosci. Remote Sens. Lett. 15(4), 607–611 (2018)

    Article  Google Scholar 

  30. Lumia, R., Shapiro, L., Zuniga, O.: A new connected components algorithm for virtual memory computers. Comput. Vision Graph. Image Process. 22(2), 287–300 (1983)

    Article  Google Scholar 

  31. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31865-1_25

    Chapter  Google Scholar 

  32. Hsu, H., Lachenbruch, P.A.: Paired t test. Wiley StatsRef: statistics reference online (2014)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr Mustafa Zeybek for his contribution to 3D data production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Biçici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biçici, S. (2024). Effectiveness of Different Machine Learning Algorithms in Road Extraction from UAV-Based Point Cloud. In: Ben Ahmed, M., Boudhir, A.A., El Meouche, R., Karaș, İ.R. (eds) Innovations in Smart Cities Applications Volume 7. SCA 2023. Lecture Notes in Networks and Systems, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-031-54376-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54376-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54375-3

  • Online ISBN: 978-3-031-54376-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics