Skip to main content

Low-Cost Global Navigation Satellite System for Drone Photogrammetry Projects

  • Conference paper
  • First Online:
Innovations in Smart Cities Applications Volume 7 (SCA 2023)

Abstract

This work is part of a thesis research at IRC. The subject is the follow up of the evolution of an earthen dike subjected to the swell, its close environment as well as its maintenance by doing several data collection missions in two years. One type of data retrieved so far is the imagery of the dike taken by drone. The goal is to determine the shape of the dike, to observe the vegetation cover and to estimate the shallow bathymetry near the dike. A low cost GNSS receiver is used to determine the ground control points coordinates using the corrections of Centipede Network stations in the area. The coordinates were obtained in RTK-fixed mode. Two kinds of GNSS antennas (multiband and dual band) were used to determine the GCP’s (Ground Control Points) and CP’s (Checkpoints), we compare the accuracy of the digital models generated with both GCP’s sets for two collections of images. The best results were obtained with the multiband GNSS antenna for the collection of images with higher overlap ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alevizos, E., Oikonomou, D., Argyriou, A.V., Alexakis, D.D.: Fusion of drone-based RGB and multi-spectral imagery for shallow water bathymetry inversion. Remote Sens. 14, 1127 (2022). https://doi.org/10.3390/rs14051127

    Article  Google Scholar 

  2. Carrivick, J.L., Smith, M.W., Quincey, D.J.: Structure from Motion in the Geosciences. Wiley, Hoboken (2016)

    Google Scholar 

  3. Drummond, C.D., Harley, M.D., Turner, I.L., Matheen, A.N.A., Glamore, W.C.: UAV Applications to Coastal Engineering, N Z (2015)

    Google Scholar 

  4. Ferrer-González, E., Agüera-Vega, F., Carvajal-Ramírez, F., Martínez-Carricondo, P.: UAV photogrammetry accuracy assessment for corridor mapping based on the number and distribution of ground control points. Remote Sens. 12, 2447 (2020). https://doi.org/10.3390/rs12152447

    Article  Google Scholar 

  5. Flores-de-Santiago, F., Valderrama-Landeros, L., Rodríguez-Sobreyra, R., Flores-Verdugo, F.: Assessing the effect of flight altitude and overlap on orthoimage generation for UAV estimates of coastal wetlands. J. Coast. Conserv. 24, 35 (2020). https://doi.org/10.1007/s11852-020-00753-9

    Article  Google Scholar 

  6. Lyzenga, D.R., Malinas, N.P., Tanis, F.J.: Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 44, 2251–2259 (2006). https://doi.org/10.1109/TGRS.2006.872909

    Article  Google Scholar 

  7. Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F.-J., García-Ferrer, A., Pérez-Porras, F.-J.: Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. Int. J. Appl. Earth Obs. Geoinf. 72, 1 (2018). https://doi.org/10.1016/j.jag.2018.05.015

    Article  Google Scholar 

  8. Mourato, S., Fernandez, P., Pereira, L., Moreira, M.: Improving a DSM obtained by unmanned aerial vehicles for flood modelling. IOP Conf. Ser. Earth Environ. Sci. 95, 022014 (2017). https://doi.org/10.1088/1755-1315/95/2/022014

    Article  Google Scholar 

  9. Rossi, G., Tanteri, L., Tofani, V., Vannocci, P., Moretti, S., Casagli, N.: Multitemporal UAV surveys for landslide mapping and characterization. Landslides 15, 1045–1052 (2018). https://doi.org/10.1007/s10346-018-0978-0

    Article  Google Scholar 

  10. Rossi, L., Mammi, I., Pelliccia, F.: UAV-derived multispectral bathymetry. Remote Sens. 12, 3897 (2020). https://doi.org/10.3390/rs12233897

  11. Ruzgienė, B., Berteška, T., Gečyte, S., Jakubauskienė, E., Aksamitauskas, V.Č: The surface modelling based on UAV photogrammetry and qualitative estimation. Measurement 73, 619–627 (2015). https://doi.org/10.1016/j.measurement.2015.04.018

    Article  Google Scholar 

  12. Sammuneh, M.A., El Meouche, R., Eslahi, M., Farazdaghi, E.: Low-cost global navigation satellite system (low-cost GNSS) for mobile geographic information system (GIS). In: Ben Ahmed, M., Boudhir, A.A., Santos, D., Dionisio, R., Benaya, N. (eds.) SCA 2022. LNNS, vol. 629, pp. 105–117. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26852-6_10

  13. Sanz-Ablanedo, E., Chandler, J., Rodríguez-Pérez, J., Ordóñez, C.: Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sens. 10, 1606 (2018). https://doi.org/10.3390/rs10101606

    Article  Google Scholar 

  14. Stumpf, R.P., Holderied, K., Sinclair, M.: Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 48, 547–556 (2003). https://doi.org/10.4319/lo.2003.48.1_part_2.0547

    Article  Google Scholar 

  15. Sun, S.-H., et al.: Imaging-based nearshore bathymetry measurement using an unmanned aircraft system. J. Waterw. Port Coast. Ocean Eng. 145, 04019002 (2019). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000502

    Article  Google Scholar 

  16. Unger, J., Reich, M., Heipke, C.: UAV-based photogrammetry: monitoring of a building zone. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL–5, 601–606 (2014). https://doi.org/10.5194/isprsarchives-XL-5-601-2014

  17. DJI - Site official. DJI Off. https://www.dji.com/fr. Accessed 15 June 2023

  18. Le Reseau Centipede RTK. Centipede RTK. https://docs.centipede.fr/. Accessed 19 June 2023

  19. SW Maps - GIS & Data Collector - Apps on Google Play. https://play.google.com/store/apps/details?id=np.com.softwel.swmaps&hl=en. Accessed 19 June 2023

Download references

Acknowledgement

This research was supported by CEREMA, we thank especially Eng. Pierre Henri who kindly accepted to do the drone surveys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali Sammuneh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sammuneh, M.A., Fuentes, A.V., Poupardin, A., Sergent, P., Jeong, J. (2024). Low-Cost Global Navigation Satellite System for Drone Photogrammetry Projects. In: Ben Ahmed, M., Boudhir, A.A., El Meouche, R., Karaș, İ.R. (eds) Innovations in Smart Cities Applications Volume 7. SCA 2023. Lecture Notes in Networks and Systems, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-031-54376-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54376-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54375-3

  • Online ISBN: 978-3-031-54376-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics