Skip to main content

Data-Driven and Artificial Intelligence Approaches for System-Wide Prediction of the Drugable Proteome to Drug Discovery in Farm Animals

  • Chapter
  • First Online:
Sustainable Agriculture Reviews

Abstract

A druggable proteome is of global interest for the drug development process. Growing livestock for food relies strongly on pharmacologically active chemicals, or medicines, in modern agricultural practice. The use of medications in food animals is critical for the welfare and well-being of the animals and the industry’s economics. Drug consumption, on the other hand, is linked to adverse impacts on public well-being. Therefore it is crucial to test the drug comprehensively before its use in agricultural practice. The identification of druggable proteome requires a non-trivial amount of resources and time, therefore, artificial intelligence and machine learning have emerged as invaluable tools for drawing meaningful perspectives and improving decision making in drug research. In this respect, the overall drug discovery process necessitates a long-term transition and lowers production costs. Artificial intelligence is a promising alternative for dysfunctional drug discovery and development. This chapter outlines the applications of artificial intelligence and machine learning innovations to many other techniques in drug development, such as target recognition, compound screening, lead generation and optimization, drug reaction and synergy prediction, de novo drug design, and drug repurposing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SMILES:

Simplified Molecular Input Line Entry System

DTA:

Drug-Target binding Affinity

DTI:

Drug-Target protein Interaction

References

  • Acharya A, Garg LC (2016) Drug target identification and prioritization for treatment of ovine foot rot: an In Silico approach. Int J Genomics 2016:7361361

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali SA, Singh P, Tomar SK, Mohanty AK, Behare P (2020) Proteomics fingerprints of systemic mechanisms of adaptation to bile in Lactobacillus fermentum. J Proteome 213:103600

    Article  CAS  Google Scholar 

  • Almeida AM, Ali SA, Ceciliani F, Eckersall PD, Hernandez-Castellano LE, Han R, Hodnik JJ, Jaswal S, Lippolis JD, McLaughlin M, Miller I (2021) Domestic animal proteomics in the 21st century: a global retrospective and viewpoint analysis. J Proteome 241:104220

    Article  CAS  Google Scholar 

  • Baxevanis AD, Bateman A (2015) The importance of biological databases in biological discovery. Curr Protoc Bioinformatics 50(1):1–1

    Article  Google Scholar 

  • Bender A, Cortes-Ciriano I (2020) Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: ways to make an impact, and why we are not there yet. Drug Discov Today. https://doi.org/10.1016/j.drudis.2020.12.009

  • Bender A, Cortes-Ciriano I (2021) Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data used for AI in drug discovery. Drug Discov Today 26:511–524

    Article  CAS  PubMed  Google Scholar 

  • Blaschke T, Olivecrona M, Engkvist O, Bajorath J, Chen H (2018) Application of generative autoencoder in de novo molecular design. Mol Inf 37(1–2):1700123

    Article  Google Scholar 

  • Boby N, Abbas MA, Lee EB, Park SC (2020) Pharmacodynamics of Ceftiofur selected by genomic and proteomic approaches of streptococcus parauberis isolated from the flounder, Paralichthys olivaceus. Int J Genomics 2020:4850290

    Article  PubMed  PubMed Central  Google Scholar 

  • Briken V (2008) Molecular mechanisms of host-pathogen interactions and their potential for the discovery of new drug targets. Curr Drug Targets 9(2):150–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra A, Ali SA, Bathla S, Rawat P, Vohra V, Kumar S, Mohanty AK (2020) High-resolution mass spectrometer–based ultra-deep profile of milk whey proteome in Indian Zebu (Sahiwal) cattle. Front Nutr 7:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1(4):309–315

    Article  CAS  PubMed  Google Scholar 

  • Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29:1046–1051

    Article  CAS  PubMed  Google Scholar 

  • Dykstra C, Frenking G, Kim K, Scuseria G (eds) (2011) Theory and applications of computational chemistry: the first forty years. Elsevier

    Google Scholar 

  • Entzeroth M, Flotow H, Condron P (2009) Overview of high-throughput screening. Curr Protoc Pharmacol 44(1):9–4

    Article  Google Scholar 

  • Gashaw I, Ellinghaus P, Sommer A, Asadullah K (2011) What makes a good drug target? Drug Discov Today 16(23–24):1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Geoffrey B, Sanker A, Madaj R, Tresanco MSV, Upadhyay M, Gracia J (2020) A program to automate the discovery of drugs for West Nile and Dengue virus—programmatic screening of over a billion compounds on PubChem, generation of drug leads and automated In Silico modelling. J Biomol Struct Dyn 40:1–9

    Google Scholar 

  • Géron A (2019) Hands-on machine learning with Scikit-learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems. O’Reilly Media

    Google Scholar 

  • Gollapudi S (2016) Practical machine learning. Packt Publishing Ltd

    Google Scholar 

  • Govindaraj RG, Brylinski M (2018) Comparative assessment of strategies to identify similar ligand-binding pockets in proteins. BMC Bioinf 19(1):1–17

    Article  Google Scholar 

  • Gupta A, Müller AT, Huisman BJH, Fuchs JA, Schneider P, Schneider G (2018) Generative recurrent networks for de novo drug design. Mol Inf 37(1–2):1700111

    Article  Google Scholar 

  • Hassan SS, Tiwari S, Guimarães LC, Jamal SB, Folador E, Sharma NB, de Castro Soares S, Almeida S, Ali A, Islam A, Póvoa FD (2014) Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis. BMC Genomics 15(7):1–19

    Google Scholar 

  • He T, Heidemeyer M, Ban F, Cherkasov A, Ester M (2017) SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines. J Cheminformatics. https://doi.org/10.1186/s13321-017-0209-z

  • Honda S, Shi S, Ueda HR (2019) SMILES transformer: pre-trained molecular fingerprint for low data drug discovery. CoRR

    Google Scholar 

  • Huang K, Xiao C, Glass LM, Sun J (2020) MolTrans: molecular interaction transformer for drug–target interaction prediction. Bioinformatics. https://doi.org/10.1093/bioinformatics/btaa880

  • Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162(6):1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaswal S, Anand V, Ali SA, Jena MK, Kumar S, Kaushik JK, Mohanty AK (2021) TMT based deep proteome analysis of buffalo mammary epithelial cells and identification of novel protein signatures during lactogenic differentiation. FASEB J 35(6):e21621

    Article  CAS  PubMed  Google Scholar 

  • Karplus M (2003) Molecular dynamics of biological macromolecules: a brief history and perspective. Biopolymers 68(3):350–358

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Ali SA, Kumar S, Mohanty AK, Behare P (2017) Label-free quantitative proteomic analysis of Lactobacillus fermentum NCDC 400 during bile salt exposure. J Proteome 167:36–45

    Article  CAS  Google Scholar 

  • Kaur G, Poljak A, Ali SA, Zhong L, Raftery MJ, Sachdev P (2021a) Extending the depth of human plasma proteome coverage using simple fractionation techniques. J Proteome Res 20(2):1261–1279

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Kalia M, Taneja N (2021b) Identification of novel non-homologous drug targets against Acinetobacter baumannii using subtractive genomics and comparative metabolic pathway analysis. Microb Pathog 152:104608

    Article  CAS  PubMed  Google Scholar 

  • Kohavi R (1998) Glossary of terms. Special issue on applications of machine learning and the knowledge discovery process. Kluwer;30(271):127–132

    Google Scholar 

  • Kumar R, Ali SA, Singh SK, Bhushan V, Mathur M, Jamwal S, Mohanty AK, Kaushik JK, Kumar S (2020) Antimicrobial peptides in farm animals: an updated review on its diversity, function, modes of action and therapeutic prospects. Vet Sci 7(4):206

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Ali SA, Singh SK, Bhushan V, Kaushik JK, Mohanty AK, Kumar S (2021) Peptide profiling in cow urine reveals molecular signature of physiology-driven pathways and in-silico predicted bioactive properties. Sci Rep 11(1):1–6

    Google Scholar 

  • Larsdotter S, Nostell K, von Euler H (2015) Serum thymidine kinase activity in clinically healthy and diseased horses: a potential marker for lymphoma. Vet J 205(2):313–316

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Ginese M, Beamer G, Danz HR, Girouard DJ, Chapman-Bonofiglio SP, Lee M, Hulverson MA, Choi R, Whitman GR, Ojo KK (2018) Therapeutic efficacy of bumped kinase inhibitor 1369 in a pig model of acute diarrhea caused by Cryptosporidium hominis. Antimicrob Agents Chemother 62(7):e00147-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Su Z, Zhang C, Xu Z, Chang X, Zhu J, Xiao R, Li L, Zhou R (2018) Identification of drug target candidates of the swine pathogen Actinobacillus pleuropneumoniae by construction of protein–protein interaction network. Genes Genomics 40(8):847–856

    Article  CAS  PubMed  Google Scholar 

  • Lin X (2020) DeepGS: deep representation learning of graphs and sequences for drug-target binding affinity prediction. CoRR

    Google Scholar 

  • Mahmud A, Khan MT, Iqbal A (2019) Identification of novel drug targets for humans and potential vaccine targets for cattle by subtractive genomic analysis of Brucella abortus strain 2308. Microb Pathog 137:103731

    Article  CAS  PubMed  Google Scholar 

  • Maziarka Ł, Danel T, Mucha S, Rataj K, Tabor J, Jastrzębski S (2020) Molecule attention transformer. CoRR

    Google Scholar 

  • Mercado R, Rastemo T, Lindelöf E, Klambauer G, Engkvist O, Chen H, Bjerrum EJ (2020) Graph networks for molecular design. In: Machine learning: science and technology

    Google Scholar 

  • Mohan J, Ali SA, Suvartan R, Kapila S, Sharma R, Tomar SK, Behare P, Yadav H (2018) Bioavailability of biotransformed zinc enriched dahi in wistar rats. Int J Probiotics Prebiotics 13(2–3):45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal SI, Ferdous S, Jewel NA, Akter A, Mahmud Z, Islam MM, Afrin T, Karim N (2015) Identification of potential drug targets by subtractive genome analysis of Escherichia coli O157: H7: an in silico approach. Adv Appl Bioinform Chem 8:49

    PubMed  PubMed Central  Google Scholar 

  • Nataraj BH, Ali SA, Behare PV, Yadav H (2020) Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb Cell Factories 19(1):1–22

    Article  Google Scholar 

  • Noordik JH (ed) (2004) Cheminformatics developments: history, reviews and current research. IOS Press

    Google Scholar 

  • Ozdemir S (2016) Principles of data science. Packt Publishing Ltd

    Google Scholar 

  • Öztürk H, Özgür A, Ozkirimli E (2018) DeepDTA: deep drug–target binding affinity prediction. Bioinformatics 34(17):i821–i829

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvege MM, Rahman M, Hossain MS (2014) Genome-wide analysis of Mycoplasma hominis for the identification of putative therapeutic targets. Drug Target Insights 8:DTI-S19728

    Article  Google Scholar 

  • Pham HN, Le TH (2019) Attention-based multi-input deep learning architecture for biological activity prediction: an application in EGFR inhibitors. CoRR

    Google Scholar 

  • Pragya P, Kaur G, Ali SA, Bhatla S, Rawat P, Lule V, Kumar S, Mohanty AK, Behare P (2017) High-resolution mass spectrometry-based global proteomic analysis of probiotic strains Lactobacillus fermentum NCDC 400 and RS2. J Proteome 152:121–130

    Article  CAS  Google Scholar 

  • Radusky LG, Hassan SS, Lanzarotti E, Tiwari S, Jamal SB, Ali J, Ali A, Ferreira RS, Barh D, Silva A, Turjanski AG (2015) An integrated structural proteomics approach along the druggable genome of Corynebacterium pseudotuberculosis species for putative druggable targets. BMC Genomics 16(5):1–8

    Google Scholar 

  • Rifaioglu AS, Nalbat E, Atalay V, Martin MJ, Cetin-Atalay R, Doğan T (2020) DEEPScreen: high performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem Sci 11(9):2531–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roskoski R Jr (2019) Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res 144:19–50

    Article  CAS  PubMed  Google Scholar 

  • Roy J, Wycislo KL, Pondenis H, Fan TM, Das A (2017) Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin. PLoS One 12(9):e0183930

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakharkar MK, Rajamanickam K, Chandra R, Khan HA, Alhomida AS, Yang J (2018) Identification of novel drug targets in bovine respiratory disease: an essential step in applying biotechnologic techniques to develop more effective therapeutic treatments. Drug Des Devel Ther 12:1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer DA, Betzer DP, Smith KD, Millman ZG, Michalski HC, Menchaca SE, Zambriski JA, Ojo KK, Hulverson MA, Arnold SL, Rivas KL (2016) Novel bumped kinase inhibitors are safe and effective therapeutics in the calf clinical model for cryptosporidiosis. J Infect Dis 214(12):1856–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shashikumar NG, Baithalu RK, Bathla S, Ali SA, Rawat P, Kumaresan A, Kumar S, Maharana BR, Singh G, Kumar DP, Singh SK (2018) Global proteomic analysis of water buffalo (Bubalus bubalis) saliva at different stages of estrous cycle using high throughput mass spectrometry. Theriogenology 110:52–60

    Article  CAS  PubMed  Google Scholar 

  • Solanki V, Tiwari V (2018) Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci Rep 8(1):1–19

    Article  CAS  Google Scholar 

  • Ståhl N, Falkman G, Karlsson A, Mathiason G, Bostrom J (2019) Deep reinforcement learning for multiparameter optimization in de novo drug design. J Chem Inf Model 59(7):3166–3176

    Article  PubMed  Google Scholar 

  • Tan MF, Zou G, Wei Y, Liu WQ, Li HQ, Hu Q, Zhang LS, Zhou R (2020) Protein–protein interaction network and potential drug target candidates of Streptococcus suis. J Appl Microbiol. https://doi.org/10.1111/jam.14950

  • Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I (2015) Tissue-based map of the human proteome. Science 347(6220):1260419

    Article  PubMed  Google Scholar 

  • Vaibhao L, Kanchan M, Ali SA, Preeti R, Sudarshan K, Pradip B, Mohanty AK (2016) Evaluation of stationary phase and bile stress related protein spots in Lactobacillus fermentum NCDC 400 by 2-DE method. Indian J Dairy Sci 69(4):455–459

    Google Scholar 

  • Van Voorhis WC, Doggett JS, Parsons M, Hulverson MA, Choi R, Arnold SL, Riggs MW, Hemphill A, Howe DK, Mealey RH, Lau AO (2017) Extended-spectrum antiprotozoal bumped kinase inhibitors: a review. Exp Parasitol 180:71–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. CoRR

    Google Scholar 

  • Wan F, Zhu Y, Hailin H, Dai A, Cai X, Chen L, Gong H, Xia T, Yang D, Wang M-W, Zeng J (2019) DeepCPI: a deep learning-based framework for large-scale in silico drug screening. Genomics Proteomics Bioinformatics 17(5):478–495

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Fang X, Yipin L, Yang C-Y, Wang S (2005) The PDBbind database: methodologies and updates. J Med Chem 48(12):4111–4119

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhenzhen D, Ding M, Zhao R, Rodriguez-Paton A, Song T (2020) LDCNN-DTI: a novel light deep convolutional neural network for drug-target interaction predictions. In: 2020 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, pp 1132–1136

    Chapter  Google Scholar 

  • Zhou J, Li S, Liang H, Xiong H, Wang F, Xu T, Xiong H, Dou D (2020) Distance-aware molecule graph attention network for drug-target binding affinity prediction. CoRR

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ben Geoffrey, A.S., Virk, J.S., Mittal, D., Kaur, G., Ali, S.A. (2024). Data-Driven and Artificial Intelligence Approaches for System-Wide Prediction of the Drugable Proteome to Drug Discovery in Farm Animals. In: Kumar Yata, V., Mohanty, A.K., Lichtfouse, E. (eds) Sustainable Agriculture Reviews . Sustainable Agriculture Reviews, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-031-54372-2_5

Download citation

Publish with us

Policies and ethics