Skip to main content

The Square Root of the Laplacian

  • Chapter
  • First Online:
Integro-Differential Elliptic Equations

Part of the book series: Progress in Mathematics ((PM,volume 350))

  • 136 Accesses

Abstract

In this chapter, we study the simplest integro-differential elliptic operator: the square-root of the Laplacian, \(\sqrt {-\varDelta }\). We start by establishing its basic properties, including the harmonic extension representation and the corresponding heat kernel and fundamental solution. We then prove the comparison principle, compute its Poisson kernel in a ball and find the corresponding mean value property, deduce the Harnack inequality, and establish interior regularity estimates. Finally, we construct some explicit solutions and develop the analogous results for the fractional Laplacian \((-\Delta )^s\), with \(s \in (0, 1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Integrability at infinity is not a problem at this point; we can assume u to be compactly supported.

  2. 2.

    We refer to [29] for a direct proof of Proposition 1.6.3, not based on Kelvin transforms nor the Poisson kernel of the half-space.

  3. 3.

    Alternatively, a function that satisfies \({\sqrt {-\Delta }\,} u = f\) in \(B_1\), as seen in the extension, corresponds to a harmonic function \(\tilde u\) in \(\mathbb {R}^{n+1}_+\) such that \(\partial _{x_{n+1}} \tilde u = f\) on \(\{x_{n+1} = 0\}\). Hence, we expect \(\tilde u\) (and, therefore, u) to have one more “derivative” of regularity than f.

  4. 4.

    This is the unique harmonic extension given by the Poisson kernel, because it is sublinear at infinity. A priori, if we just required harmonicity of the extension, we could have subtracted \(\lambda y\) for any \(\lambda \in \mathbb {R}\), but only \(\lambda = 1\) gives the sublinear growth at infinity.

References

  1. Nonlocal Equations Wiki. http://www.ma.utexas.edu/mediawiki.

  2. N. Abatangelo, E. Valdinoci, Getting acquainted with the fractional laplacian, in Contemporary Research in Elliptic PDEs and Related Topics, Springer INdAM Series, vol 33 ed. by S. Dipierro (Springer, Cham, 2019)

    Google Scholar 

  3. V. Akgiray, G.G. Booth, The stable-law model of stock returns. J. Bus. Econ. Stat. 6, 55–57 (1988)

    Article  Google Scholar 

  4. C.J. Amick, J.F. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation. Acta Math. 167, 107–126 (1991)

    Article  MathSciNet  Google Scholar 

  5. T.B. Benjamin, Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559–592 (1967)

    Article  Google Scholar 

  6. C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework. Commun. Pure Appl. Anal. 15, 657–699 (2016)

    Article  MathSciNet  Google Scholar 

  7. C. Bucur, E. Valdinoci, Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20 (Springer International Publishing, New York, 2016)

    Google Scholar 

  8. T. Byczkowski, J. Małecki, M. Ryznar, Bessel potentials, hitting distributions and Green functions. Trans. Am. Math. Soc. 361, 4871–4900 (2009)

    Article  MathSciNet  Google Scholar 

  9. X. Cabré, J.M. Roquejoffre, The influence of fractional diffusion on Fisher-KPP equations. Comm. Math. Phys. 320, 679–22 (2013)

    Article  MathSciNet  Google Scholar 

  10. X. Cabré, J. Solà-Morales, Layer solutions in a half-space for boundary reactions. Comm. Pure Appl. Math. 58, 1678–1732 (2005)

    Article  MathSciNet  Google Scholar 

  11. L. Caffarelli, C.H. Chan, A. Vasseur, Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24, 849–869 (2011)

    Article  MathSciNet  Google Scholar 

  12. L. Caffarelli, J.M. Roquejoffre, Y. Sire, Variational problems with free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12, 1151–1179 (2010)

    Article  MathSciNet  Google Scholar 

  13. L. Caffarelli, J.M. Roquejoffre, O. Savin, Nonlocal minimal surfaces. Comm. Pure Appl. Math. 63, 1111–1144 (2010)

    Article  MathSciNet  Google Scholar 

  14. L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32, 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  15. L. Caffarelli, F. Soria, J.L. Vázquez, Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. 15, 1701–1746 (2013)

    Article  MathSciNet  Google Scholar 

  16. L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903–1930 (2010)

    Article  MathSciNet  Google Scholar 

  17. S.-Y.A. Chang, M.d.M. Gonzalez, Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2010)

    Google Scholar 

  18. W. Chen, Y. Li, P. Ma, The Fractional Laplacian (World Scientific, Singapore, 2020)

    Book  Google Scholar 

  19. P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in Mathematical Foundation of Turbulent Viscous Flows. Lecture Notes in Mathematics (Springer, Berlin, 2006), pp. 1–43

    Google Scholar 

  20. A.-L. Dalibard, D. Gérard-Varet, On shape optimization problems involving the fractional Laplacian. ESAIM Control Optim. Calc. Var. 19, 976–1013 (2013)

    Article  MathSciNet  Google Scholar 

  21. E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  22. S. Dipierro, G. Palatucci, E. Valdinoci, Dislocation dynamics in crystals: A macroscopic theory in fractional Laplace setting. Comm. Math. Phys. 333, 1061–1105 (2015)

    Article  MathSciNet  Google Scholar 

  23. S. Dipierro, O. Savin, E. Valdinoci, All functions are locally s-harmonic up to a small error. J. Eur. Math. Soc. 19, 957–966 (2017)

    Article  MathSciNet  Google Scholar 

  24. W. Dong, G. Shi, X. Li, Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans. Image Process. 22, 700–711 (2012)

    Article  MathSciNet  Google Scholar 

  25. W.J. Drugan, Two exact micromechanics-based nonlocal constitutive equations for random linear elastic composite materials. J. Mech. Phys. Solids 51, 1745–1772 (2003)

    Article  MathSciNet  Google Scholar 

  26. Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 667–696 (2012)

    Article  MathSciNet  Google Scholar 

  27. B. Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract. Calc. Appl. Anal. 15, 536–555 (2012)

    Article  MathSciNet  Google Scholar 

  28. A. Elgart, B. Schlein, Mean field dynamics of boson stars. Comm. Pure Appl. Math. 60, 500–545 (2007)

    Article  MathSciNet  Google Scholar 

  29. A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Process. 17, 1047–1060 (2008)

    Article  MathSciNet  Google Scholar 

  30. A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Engng Sci 10, 425–435 (1972)

    Article  Google Scholar 

  31. A.C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002)

    Google Scholar 

  32. E. Fabes, D. Jerison, C. Kenig, Boundary behavior of solutions to degenerate elliptic equations, in Conference on Harmonic Analysis in Honor of Antoni Zygmund, vol. II, eds. by W. Beckner et al. Wadsworth Mathematics Series (Wadsworth, Belmont, 1983), pp. 577–589

    Google Scholar 

  33. E. Fabes, C. Kenig, R. Serapioni, The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations 7, 77–116 (1982)

    Article  MathSciNet  Google Scholar 

  34. X. Fernández-Real, The thin obstacle problem: a survey. Publ. Mat. 66, 3–55 (2022)

    Article  MathSciNet  Google Scholar 

  35. M. Focardi, E. Spadaro, On the measure and the structure of the free boundary of the lower dimensional obstacle problem. Arch. Ration. Mech. Anal. 230, 125–184 (2018)

    Article  MathSciNet  Google Scholar 

  36. R. Frank, E. Lenzmann, Uniqueness and nondegeneracy of ground states for (− Δ)sQ + Q − Qα+1 = 0 in \(\mathbb {R}\). Acta Math. 210, 261–318 (2013)

    Google Scholar 

  37. R. Frank, E. Lieb, R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 21, 925–950 (2008)

    Article  Google Scholar 

  38. N. Garofalo, Fractional thoughts. New developments in the analysis of nonlocal operators, Contemp. Math. 723, 1–135 (2019). American Mathematical Society, Providence, RI

    Google Scholar 

  39. P. Germain, N. Masmoudi, J. Shatah, Global solutions for the gravity surface water waves equation in dimension 3. Ann. Math. 175, 691–754 (2012)

    Article  MathSciNet  Google Scholar 

  40. R. K. Getoor, First passage times for symmetric stable processes in space. Trans. Amer. Math. Soc. 101, 75–90 (1961)

    Article  MathSciNet  Google Scholar 

  41. G. Giacomin, J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits. J. Stat. Phys. 87, 37–61 (1997)

    Article  MathSciNet  Google Scholar 

  42. G. Gilboa, S. Osher, Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2008)

    Article  MathSciNet  Google Scholar 

  43. M.d.M. Gonzalez, Recent progress on the fractional Laplacian in conformal geometry, in Chapter 6 in ‘Recent Developments in Nonlocal Theory’ (De Gruyter, Berlin, 2018)

    Google Scholar 

  44. C.R. Graham, M. Zworski, Scattering matrix in conformal geometry. Invent. Math. 152, 89–118 (2003)

    Article  MathSciNet  Google Scholar 

  45. G. Grubb, Distributions and Operators (Springer, New York, 2009)

    Google Scholar 

  46. J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs (Oxford University Press Inc., New York, 1993)

    Google Scholar 

  47. P. Hsu, On excursions of reflecting Brownian motion. Trans. Am. Math. Soc. 296, 239–264 (1986)

    Article  MathSciNet  Google Scholar 

  48. N. Humphries et al., Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465, 1066–1069 (2010)

    Article  Google Scholar 

  49. L. Ilcewicz, A. Narasimhan, J. Wilson, An experimental verification of nonlocal fracture criterion. Eng. Fract. Mech. 14, 801–808 (1981)

    Article  Google Scholar 

  50. C. Imbert, L. Silvestre, Weak Harnack inequality for the Boltzmann equation without cut-off. J. Eur. Math. Soc. 22, 507–592 (2020)

    Article  MathSciNet  Google Scholar 

  51. C. Imbert, L. Silvestre, The Schauder estimate for kinetic integral equations. Anal. PDE 14, 171–204 (2021)

    Article  MathSciNet  Google Scholar 

  52. C. Imbert, L. Silvestre, Global regularity estimates for the Boltzmann equation without cut-off. J. Am. Math. Soc. 35, 625–703 (2022)

    Article  MathSciNet  Google Scholar 

  53. M.S. Joshi, A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds. Acta Math. 184, 41–86 (2000)

    Article  MathSciNet  Google Scholar 

  54. V. Katkovnik, A. Foi, K. Egiazarian, J. Astola, From local kernel to nonlocal multiple-model image denoising. Int. J. Comput. Vis. 86, 1 (2009)

    Article  MathSciNet  Google Scholar 

  55. T. Kilpeläinen, Weighted Sobolev spaces and capacity. Ann. Acad. Sci. Fenn. Ser. A I Math. 19, 95–113 (1994)

    MathSciNet  Google Scholar 

  56. J. Klafter, B. White, M. Levandowsky, W. Alt, G. Hoffmann (eds.) Biological Motion, Lecture Notes in Biomathematics, vol. 89 (Springer, Berlin, 1990)

    Google Scholar 

  57. E. Kroner, Elasticity theory of materials with long range cohesive forces. Int. J. Solids and Structures 3, 731–742 (1967)

    Article  Google Scholar 

  58. N.S. Landkof, Foundations of Modern Potential Theory (Springer, New York, 1972)

    Book  Google Scholar 

  59. N. Laskin, Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–304 (2000)

    Article  MathSciNet  Google Scholar 

  60. N. Laskin, Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  61. E.H. Lieb, The stability of matter: from atoms to stars. Bull. Am. Math. Soc. 22, 1–49 (1990)

    Article  MathSciNet  Google Scholar 

  62. E.H. Lieb, H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm. Math. Phys. 112, 147–174 (1987)

    Article  MathSciNet  Google Scholar 

  63. G. Lu, The Peierls-Nabarro model of dislocations: a venerable theory and its current development, in Handbook of Materials Modeling (Springer, Netherlands, 2005), pp. 793–811

    Google Scholar 

  64. B. Mandelbrot, The variation of certain speculative prices. J. Bus. 36, 394–419 (1963)

    Article  Google Scholar 

  65. R. Merton, Option pricing when the underlying stock returns are discontinuous. J. Finan. Econ. 5, 125–144 (1976)

    Article  Google Scholar 

  66. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  67. R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161 (2004)

    Article  MathSciNet  Google Scholar 

  68. S.A. Molchanov, E. Ostrovskii, Symmetric stable processes as traces of degenerate diffusion processes. Theor. Probability Appl. 14, 128–131 (1969)

    Article  MathSciNet  Google Scholar 

  69. G. Molica Bisci, V.D. Radulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and its Applications, vol. 162 (Cambridge University Press, Cambridge, 2016)

    Google Scholar 

  70. I. Monetto, W.J. Drugan, A micromechanics-based nonlocal constitutive equation for elastic composites containing randomly oriented spheroidal heterogeneities. J. Mech. Phys. Solids 52, 359–393 (2004)

    Article  MathSciNet  Google Scholar 

  71. B. Oksendal, A. Sulem, Applied Stochastic Control of Jump Diffusions (Springer, Berlin, 2005)

    Google Scholar 

  72. H. Ono, Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39, 1082–1091 (1975)

    Article  MathSciNet  Google Scholar 

  73. G. Palatucci, T. Kuusi (eds.) Recent Developments in Nonlocal Theory (De Gruyter, Berlin, 2017)

    Google Scholar 

  74. A. Reynolds, C. Rhodes, The Lévy flight paradigm: random search patterns and mechanisms. Ecology 90, 877–887 (2009)

    Article  Google Scholar 

  75. X. Ros-Oton, J. Serra, Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. 165, 2079–2154 (2016)

    Article  MathSciNet  Google Scholar 

  76. W. Schoutens, Lévy Processes in Finance: Pricing Financial Derivatives (Wiley, New York, 2003)

    Book  Google Scholar 

  77. R. Seiringer, Inequalities for Schrödinger operators and applications to the stability of matter problem, in Lecture Notes (Princeton University, Princeton, 2009)

    Google Scholar 

  78. A. Signorini, Questioni di elasticità non linearizzata e semilinearizzata. Rend. Mat. e Appl. 18, 95–139 (1959)

    MathSciNet  Google Scholar 

  79. L. Silvestre, Regularity estimates for parabolic integro-differential equations and applications, in Proceedings of the ICM (2014)

    Google Scholar 

  80. L. Silvestre, A new regularization mechanism for the Boltzmann equation without cut-off. Comm. Math. Phys. 348, 69–100 (2016)

    Article  MathSciNet  Google Scholar 

  81. F. Spitzer, Some theorems concerning 2-dimensional Brownian motion. Trans. Amer. Math. Soc. 87, 187–197 (1958)

    Article  MathSciNet  Google Scholar 

  82. E. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University, Princeton, 1971)

    Google Scholar 

  83. P. Stinga, J.L. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Comm. Partial Differential Equations 35, 2092–2122 (2010)

    Article  MathSciNet  Google Scholar 

  84. J.F. Toland, The Peierls-Nabarro and Benjamin-Ono equations. J. Funct. Anal. 145, 136–150 (1997)

    Article  MathSciNet  Google Scholar 

  85. J.L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete and Continuous Dynamical Systems Series S, vol. 7, 857–885 (2014). https://www.aimsciences.org/article/doi/10.3934/dcdss.2014.7.857

    Article  MathSciNet  Google Scholar 

  86. G. Viswanathan, V. Afanasyev, S. Buldyrev, E. Murphy, P. Prince, H. Stanley, Lévy flight search patterns of wandering albatrosses. Nature 381, 413 (1996)

    Article  Google Scholar 

  87. L.P. Yaroslavsky, Digital Picture Processing, an Introduction (Springer, Berlin, 1985)

    Book  Google Scholar 

  88. L. Yue, H. Shen, J. Li, Q. Yuan, H. Zhang, L. Zhang, Image super-resolution: The techniques, applications, and future. Signal Process. 128, 389–408 (2016)

    Article  Google Scholar 

  89. X. Zhang, M. Burger, X. Bresson, S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3, 253–276 (2010)

    Article  MathSciNet  Google Scholar 

  90. K. Zhou, Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48, 1759–1780 (2010)

    Article  MathSciNet  Google Scholar 

  91. G. Zumofen, J. Klafter, Spectral random walk of a single molecule. Chem. Phys. Lett. 219, 303–309 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández-Real, X., Ros-Oton, X. (2024). The Square Root of the Laplacian. In: Integro-Differential Elliptic Equations. Progress in Mathematics, vol 350. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-54242-8_1

Download citation

Publish with us

Policies and ethics