Skip to main content

A Modern Approach to Osteosarcoma Tumor Identification Through Integration of FP-Growth, Transfer Learning and Stacking Model

  • Conference paper
  • First Online:
Information Technology and Systems (ICITS 2024)

Abstract

The early detection of cancer through radiographs is crucial for identifying indicative signs of its presence or status. However, the analysis of histological images of osteosarcoma faces significant challenges due to discrepancies among pathologists, intra-class variations, inter-class similarities, complex contexts, and data noise. In this article, we present a novel deep learning method that helps address these issues. The architecture of our model consists of the following phases: 1) Dataset construction: advanced image processing techniques such as dimensionality reduction, identification of frequent patterns through unsupervised learning (FP-Growth), and data augmentation are applied in this phase. 2) Stacking model: we apply a stacking model that combines the strengths of two models: convolutional neural networks (CNN) with transfer learning, allowing us to leverage pre-trained knowledge from related datasets, and a Random Forest (RF) model to enhance the classification and diagnosis of osteosarcoma images. The models were trained on a dataset of publicly available images from The Cancer Imaging Archive (TCIA) [12]. The accuracy of our models is evaluated using classification metrics such as Accuracy, F1 Score, Precision, and Recall. This work provides a solid foundation for ongoing innovation in histology and the potential to apply and adapt this approach to broader clinical challenges in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp. 207–216 (1993)

    Google Scholar 

  2. Bermejo Casla, G.: Diseño de un algoritmo KNN aplicado a la detección de cáncer cerebral mediante imágenes hiperespectrales. ETSIS_Telecomunicacion (2017)

    Google Scholar 

  3. Briones-Velázquez, E.A., Luna-de-la-Luz, C.: Recidiva de osteosarcoma: detección por gammagrafía y SPECT/CT empleando 99mTc-sestamibi. Revista mexicana de pediatría 87(1), 38–40 (2020)

    Google Scholar 

  4. Cánovas-García, F., Alonso-Sarría, F., Gomariz-Castillo, F.: Modificación del algoritmo Random Forest para su empleo en clasificación de imágenes de teledetección. In Aplicaciones de las Tecnologías de la Información Geográfica (TIG) para el desarrollo económico sostenible XVII Congreso Nacional de Tecnologías de Información Geográfica (2016)

    Google Scholar 

  5. D’Acunto, M., Martinelli, M., Moroni, D.: Deep learning approach to human osteosarcoma cell detection and classification. In: Choroś, K., Kopel, M., Kukla, E., Siemiński, A. (eds.) MISSI 2018. AISC, vol. 833, pp. 353–361. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98678-4_36

    Chapter  Google Scholar 

  6. de Oliveira, G.A.P., de Siqueira, M.E.P.B., Vasconcelos, A.C.A., da Silva Torres, R.: Melanoma recognition in dermatoscopy images through deep learning. In: International Workshop on Artificial Neural Networks and Machine Learning, pp. 98–107. Springer, Cham (2017)

    Google Scholar 

  7. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 1–12. ACM (2000)

    Google Scholar 

  8. Hurtado, R., Guzmán, S., Muñoz, A.: An architecture and a new deep learning method for head and neck cancer prognosis by analyzing serial positron emission tomography images. In: Naiouf, M., Rucci, E., Chichizola, F., De Giusti, L. (eds.) JCC-BD &ET 2023, pp. 129–140. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-40942-4_10

  9. Krishnaraj, N., Vidhya, R., Vigneshwar, M., Gayathri, K., Haseena Begam, K., Kavi Sindhuja, R.M.: Pneumonia prediction on X-ray images using CNN with transfer learning. In: Chen, J.I.Z., Tavares, J.M.R.S., Shi, F. (eds.) ICIPCN 2022, pp. 816–825. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-12413-6_64

    Chapter  Google Scholar 

  10. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-denseunet: hybrid densely connected unet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  11. Mishra, R., Daescu, O., Leavey, P., Rakheja, D., Sengupta, A.: Histopathological diagnosis for viable and non-viable tumor prediction for osteosarcoma using convolutional neural network. In: Cai, Z., Daescu, O., Li, M. (eds.) ISBRA 2017. LNCS, vol. 10330, pp. 12–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59575-7_2

    Chapter  Google Scholar 

  12. Leavey, P., et al.: Osteosarcoma data from UT Southwestern/UT Dallas for Viable and Necrotic Tumor Assessment [Conjunto de datos]. The Cancer Imaging Archive (2019). https://doi.org/10.7937/tcia.2019.bvhjhdas

  13. Pannu, A.: Artificial intelligence and its application in different areas. Int. J. Eng. Innovative Technol. 4, 79–84 (2015)

    Google Scholar 

  14. Siegel, R.L., Miller, K.D., Wagle, N.S., Jemal, A.: Cancer statistics, 2023. CA: A Cancer J. Clin. 73(1), 17–48 (2023). https://doi.org/10.3322/caac.21763

  15. Wolpert, D.H.: Stacked generalization. Neural Networks 5(2), 241–259 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Sanmartín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanmartín, J., Azuero, P., Hurtado, R. (2024). A Modern Approach to Osteosarcoma Tumor Identification Through Integration of FP-Growth, Transfer Learning and Stacking Model. In: Rocha, Á., Ferrás, C., Hochstetter Diez, J., Diéguez Rebolledo, M. (eds) Information Technology and Systems. ICITS 2024. Lecture Notes in Networks and Systems, vol 932. Springer, Cham. https://doi.org/10.1007/978-3-031-54235-0_28

Download citation

Publish with us

Policies and ethics