Skip to main content

Observations Inside a Window

  • Chapter
  • First Online:
Poisson Hyperplane Tessellations

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 75 Accesses

Abstract

A common approach to investigating a random set or a process of convex objects is to observe it in an observation window (often convex), to draw some conclusions, and then to increase the window. An example is the determination of a functional density for a stationary particle process by means of a limit relation. The present chapter deals with the simplest questions one can ask when a stationary Poisson hyperplane process is observed inside a given bounded set, for example the question for the number of hyperplanes meeting a convex body or the number of intersection points inside a Borel set. First and second moments of such random variables will be determined. It will be explored how the observation window and the directional distribution of the hyperplane process affect the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baci, A., Bonnet, G., Thäle, Ch.: Weak convergence of the intersection point process of Poisson hyperplanes. Ann. Inst. Henri Poincaré Probab. Stat. 58, 1208–1227 (2022)

    Article  MathSciNet  Google Scholar 

  2. Betken, C., Hug, D., Thäle, Ch.: Intersections of Poisson k-flats in constant curvature spaces. Stoch. Process. Appl. 165, 96–129 (2023)

    Article  MathSciNet  Google Scholar 

  3. Decreusefond, L., Schulte, M., Thäle, Ch.: Functional Poisson approximation in Kantorovich–Rubinstein distance with applications to U-statistics and stochastic geometry. Ann. Probab. 44, 2147–2197 (2016)

    Article  MathSciNet  Google Scholar 

  4. Gardner, R.J.: The dual Brunn–Minkowski theory for bounded Borel sets: dual affine quermassintegrals and inequalities. Adv. Math. 216, 358–386 (2007)

    Article  MathSciNet  Google Scholar 

  5. Heinrich, L.: Central limit theorems for motion-invariant Poisson hyperplanes in expanding convex bodies. Rend. Circ. Mat. Palermo, Ser. II, Suppl. 81, 187–212 (2009)

    Google Scholar 

  6. Heinrich, L., Schmidt, H., Schmidt, V.: Central limit theorems for Poisson hyperplane tessellations. Ann. Appl. Prob. 16, 919–950 (2006)

    Article  MathSciNet  Google Scholar 

  7. Hug, D., Weil, W.: Lectures on Convex Geometry. Graduate Texts in Mathematics, vol. 286. Springer, Cham (2020)

    Google Scholar 

  8. Klatt, M.A., Last, G.: On strongly rigid hyperfluctuating random measures. J. Appl. Probab. 59, 948–961 (2022)

    Article  MathSciNet  Google Scholar 

  9. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    Google Scholar 

  10. Miles, R.E.: Poisson flats in Euclidean spaces, Part I: a finite number of random uniform flats. Adv. Appl. Prob. 1, 211–237 (1969)

    Google Scholar 

  11. Schneider, R.: Random hyperplanes meeting a convex body. Z. Wahrscheinlichkeitstheorie verw. Geb. 61, 379–387 (1982)

    Article  MathSciNet  Google Scholar 

  12. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  13. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hug, D., Schneider, R. (2024). Observations Inside a Window. In: Poisson Hyperplane Tessellations. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-031-54104-9_8

Download citation

Publish with us

Policies and ethics