Skip to main content

Malware Attack Detection in Vehicle Cyber Physical System for Planning and Control Using Deep Learning

  • Chapter
  • First Online:
Machine Learning for Cyber Physical System: Advances and Challenges

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 60))

  • 63 Accesses

Abstract

Cyber-Physical Systems (CPS), which comprise smart health, smart transportation, smart grids, etc., are designed to turn traditionally separated automated critical infrastructure into modernized linked intelligent systems by interconnecting human, system, and physical resources. CPS is also expected to have a significant positive impact on the economy and society. Complexity, dynamic variability, and heterogeneity are the features of CPS, which are produced as an outcome of relationships between cyber and physical subsystems. In addition to the established and crucial safety and reliability criteria for conventional critical systems, these features create major obstacles. Within these cyber-physical systems and crucial infrastructures, for instance, connected autonomous vehicles (CAVs) may be considered. By 2025, it is anticipated that 95 per cent of new vehicles will be equipped with vehicle to vehicle (V2V), vehicle to infrastructure (V2I), and other telecommunications capabilities. To prevent CAVs on the road against unintended or harmful intrusion, innovative and automated procedures are required to ensure public safety. In addition, large-scale and complicated CPSs make it difficult to monitor and identify cyber physical threats. Solutions for CPS have included the use of Artificial Intelligence (AI) and Machine Learning (ML) techniques, which have proven successful in a wide range of other domains like automation, robotics, prediction, etc. This research suggests a Deep Learning (DL) -based Convolutional Neural Network (CNN) model for attack detection and evaluates it using the most recent V2X dataset, According to the simulation results, in this research CNN exhibits superior performance compared to the most advanced ML approaches such as Random Forest (RF), Adaptive Boosting (AdaBoost), Gradient Boosting (GBoost), Bagging and Extreme Gradient Boosting (XGBoost) and achieves an outstanding level of accuracy in the application of anomaly detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Z., Boyi, W., Lichen, Z.: Research on cyber-physical systems based on software definition. In: Proceedings of the IEEE 12th International Conference on Software Engineering and Service Science (ICSESS) (2021)

    Google Scholar 

  2. Alam, K.M., Saini, M., Saddik, A.E.: Toward social internet of vehicles: concept, architecture, and applications. IEEE Access 3, 343–357 (2015)

    Google Scholar 

  3. Piran, M.J., Murthy, G.R., Babu, G.P.: Vehicular ad hoc and sensor networks; principles and challenges. Int. J Ad hoc Sensor Ubiquit. Comput. 2(2), 38–49

    Google Scholar 

  4. Prakash, R., Malviya, H., Naudiyal, A., Singh, R., Gehlot, A.: An approach to inter-vehicle and vehicle-to-roadside communication for safety measures. In: Intelligent Communication, Control and Devices, 624. Advances in Intelligent Systems and Computing (2018)

    Google Scholar 

  5. Kumar, S., Dohare, U., Kumar, K., Dora, D.P., Qureshi, K.N., Kharel, R.: Cybersecurity measures for geocasting in vehicular cyber physical system environments. IEEE Internet Things J. 6(4), 5916–5926 (2018)

    Article  Google Scholar 

  6. https://www.av-test.org/en/statistics/malware/. Accessed 11 Nov 2023

  7. Lv, Z., Lloret, J., Song, H.: Guest editorial software defined Internet of vehicles. IEEE Trans. Intell. Transp. Syst. 22, 3504–3510 (2021)

    Article  Google Scholar 

  8. Maleh, Y., Ezzati, A., Qasmaoui, Y., Mbida, M.: A global hybrid intrusion detection system for wireless sensor networks. Proc. Comput. Sci. 52(1), 1047–1052 (2015)

    Article  Google Scholar 

  9. Kaiwartya, O., Abdullah, A.H., Cao, Y., Altameem, A., Prasad, M., Lin, C.-T., Liu, X.: Internet of vehicles: motivation, layered architecture, network model, challenges, and future aspects. IEEE Access 4, 5356–5373 (2016)

    Article  Google Scholar 

  10. Yang, L., Moubayed, A., Hamieh, I., Shami, A.: Tree-based intelligent intrusion detection system in internet of vehicles. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019)

    Google Scholar 

  11. Ullah, S., Khan, M., Ahmad, J., Jamal, S., Huma, Z., Hassan, M., Pitropakis, N., Buchanan, W.: HDL-IDS: a hybrid deep learning architecture for intrusion detection in the Internet of Vehicles. Sensors 22(4), 1340 (2022)

    Article  Google Scholar 

  12. Firdausi, I., Lim, C., Erwin, A., Nugroho, A.: Analysis of machine learning techniques used in behavior-based malware detection. In: Proceedings of the International Conference on Advances in Computing, Control and Telecommunication Technologies, Jakarta, Indonesia, 2–3 December 2010

    Google Scholar 

  13. Rana, J.S., Gudla, C., Sung, A.H.: Evaluating machine learning models for android malware detection: a comparison study. In: Proceedings of the 2018 VII International Conference on Network, Communication and Computing, New York, NY, USA, 14–16 December 2018

    Google Scholar 

  14. Kan, Z., Wang, H., Xu, G., Guo, Y., Chen, X.: Towards light-weight deep learning based malware detection. In: Proceedings of the IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018

    Google Scholar 

  15. Alzaylaee, M.K., Yerima, S.Y., Sezer, S.: DL-droid: deep learning based android malware detection using real devices. Comput. Secur. 89, 101663 (2020)

    Article  Google Scholar 

  16. Gao, H., Cheng, S., Zhang, W.: GDroid: android malware detection and classification with graph convolutional network. Comput. Secur. 106, 102264 (2021)

    Article  Google Scholar 

  17. Xu, P., Eckert, C., Zarras, A.: Detecting and categorizing Android malware with graph neural networks. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing (SAC ’21), New York, NY, USA, 22–26 March 2021, pp. 409–412

    Google Scholar 

  18. Gao, Y., Wu, H., Song, B., Jin, Y., Luo, X., Zeng, X.: A distributed network intrusion detection system for distributed denial of service attacks in vehicular ad hoc network. IEEE Access 7, 154560–154571 (2019)

    Article  Google Scholar 

  19. D’Angelo, G., Castiglione, A., Palmieri, F.: A cluster-based multidimensional approach for detecting attacks on connected vehicles. IEEE Internet Things J. 8(16), 12518–12527 (2021)

    Google Scholar 

  20. Peng, R., Li, W., Yang, T., Huafeng, K.: An internet of vehicles intrusion detection system based on a convolutional neural network. In: 2019 IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), pp. 1595–1599. IEEE (2019)

    Google Scholar 

  21. Nie, L., Ning, Z., Wang, X., Hu, X., Cheng, J., Li, Y.: Data-driven intrusion detection for intelligent internet of vehicles: a deep convolutional neural network-based method. IEEE Trans. Netw. Sci. Eng. 7(4), 2219–2230 (2020)

    Article  MathSciNet  Google Scholar 

  22. Song, H.M., Woo, J., Kim, H.K.: In-vehicle network intrusion detection using deep convolutional neural network. Vehicul. Commun. 21, 100198 (2020)

    Article  Google Scholar 

  23. Ashraf, J., Bakhshi, A.D., Moustafa, N., Khurshid, H., Javed, A., Beheshti, A.: Novel deep learning-enabled LSTM autoencoder architecture for discovering anomalous events from intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 22(7), 4507–4518 (2020)

    Article  Google Scholar 

  24. Liang, J., Chen, J., Zhu, Y., Yu, R.: A novel intrusion detection system for vehicular ad hoc networks (VANETs) based on differences of traffic flow and position. Appl. Soft Comput. 75, 712–727 (2019)

    Article  Google Scholar 

  25. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  26. Ying, C., et al.: Advance and prospects of AdaBoost algorithm. Acta Automat. Sin. 39(6), 745–758 (2013)

    Google Scholar 

  27. Shastri, S., et al.: GBoost: a novel grading-AdaBoost ensemble approach for automatic identification of erythemato-squamous disease. Int. J. Inf. Technol. 13, 959–971 (2021)

    Google Scholar 

  28. Alzubi, J.A.: Diversity based improved bagging algorithm. In: Proceedings of the International Conference on Engineering & MIS 2015 (2015)

    Google Scholar 

  29. Ramraj, S., et al.: Experimenting XGBoost algorithm for prediction and classification of different datasets. Int. J. Control Theory Appl. 9(40), 651–662 (2016)

    Google Scholar 

  30. Jogin, M., et al.: Feature extraction using convolution neural networks (CNN) and deep learning. In: 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE (2018)

    Google Scholar 

  31. https://ieee-dataport.org/documents/v2x-message-classification-prioritization-and-spam-detection-dataset

  32. Kumar, R., Zhang, X., Wang, W., Khan, R.U., Kumar, J., Sharif, A.: A multimodal malware detection technique for android IoT devices using various features. IEEE Access 7, 64411–64430 (2019)

    Article  Google Scholar 

  33. Yu, W., Ge, L., Xu, G., Fu, Z.: Towards neural network based malware detection on android mobile devices. In: Cybersecurity Systems for Human Cognition Augmentation, pp. 99–117. Springer (2014)

    Google Scholar 

  34. McLaughlin, N., Doupé, A., Ahn, G.J., del Rincon, J.M., Kang, B.J., Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E., Zhao, Z.: Deep android malware detection. In: Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy—CODASPY ’17, pp. 301–308 (2017)

    Google Scholar 

  35. Fereidooni, H., Conti, M., Yao, D., Sperduti, A.: ANASTASIA: android malware detection using static analysis of applications. In: 2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5. IEEE (2016)

    Google Scholar 

  36. Go, J.H., Jan, T., Mohanty, M., Patel, O.P., Puthal, D., Prasad, M.: Visualization approach for Malware classification with ResNeXt. In: 2020 IEEE Congresson Evolutionary Computation (CEC). IEEE, pp. 1–7 (2020)

    Google Scholar 

  37. Sudhakar, Kumar, S.: MCFT-CNN: Malware classification with fine-tune convolution neural networks using traditional and transfer learning in Internet of Things. Future Gener. Comput. Syst. 125, 334–351 (2021). https://doi.org/10.1016/j.future.2021.06.029

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Challa Ravi Kishore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kishore, C.R., Behera, H.S. (2024). Malware Attack Detection in Vehicle Cyber Physical System for Planning and Control Using Deep Learning. In: Nayak, J., Naik, B., S, V., Favorskaya, M. (eds) Machine Learning for Cyber Physical System: Advances and Challenges. Intelligent Systems Reference Library, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-031-54038-7_6

Download citation

Publish with us

Policies and ethics