Skip to main content

Artificial Intelligence for Production Management and Control Towards Mass Personalization of Global Networks

  • Chapter
  • First Online:
CIRP Novel Topics in Production Engineering: Volume 1

Abstract

Companies operating in global production networks should handle the complex, uncertain, and volatile environment, making them more vulnerable to disruptions. The Mass Personalization (MPe) paradigm is already a reality and has increased the involvement of end-users in the product lifecycle. It requires responsive and flexible manufacturing operations to produce cost-effective individualized products in dynamic batch sizes at scale taking into consideration the unique preferences of each customer. Therefore, modern manufacturing and production systems and networks must be capable of responding quickly to (i) the alteration of demand and conditions in the supply chain, and (ii) the volatile customer demands. By extension, in the context of MPe, manufacturing and production systems must be capable of self-optimizing manufacturing operations in order to achieve flexible, autonomous, and error-tolerant production. On the other hand, Intelligent Manufacturing (IM) is a key concept that has evolved during the last five years and is, currently, gaining momentum thanks to the potential offered by the Industry 4.0 vision. Thus, the ability of a company to setup an effective data gathering and processing strategy, orchestrating data flows, and then draw meaningful and actionable insights from them, is critical to MPe success. As such, the technological drivers of MPe are the Big Data Sets and Artificial Intelligence (AI) among other pillar technologies of Industry 4.0. The scope of this essay is to identify and highlight the state-of-the-art on how the integration of AI and Big Data technologies and techniques will contribute towards the efficient personalization of each customer’s experience under the framework of Industry 4.0 and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

6LoWPAN:

IPv6 Low-Power Wireless Personal Area Networks

ABC:

Artificial Bee Colony

ACO:

Ant Colony Optimization

AI:

Artificial Intelligence

AMQP:

Advanced Message Queuing Protocol

AR:

Augmented Reality

BA:

Bat Algorithm

BBO:

Biogeography Based Optimization

BFO:

Bacterial Foraging Optimization

B2B:

Business-To-Business

BLE:

Bluetooth Low Energy

BMS:

Biological Manufacturing Systems

CAx:

Computer Aided Technologies

CFO:

Central Force Optimization

CoAP:

Constrained Application Protocol

CLSA:

Clonal Selection Algorithm

CRO:

Chemical Reaction Optimization

CSA:

Cuckoo Search Algorithm

DE:

Differential Evolution

DDS:

Data Distribution Service

DL:

Deep Learning

DPO:

Dolphin Pod Optimization

EMO:

Electromagnetism Optimization

EBITDA:

Earnings Before Interest, Taxes, Depreciation and Amortization

FA:

Firefly Algorithm

FPA:

Flower Pollination Algorithm

GA:

Genetic Algorithm

GDP:

Gross Domestic Product

GPN:

Global Production Network

GSA:

Gravitational Search Algorithm

HMI:

Human–Machine Interface

HS:

Harmony Search

IoT:

Internet of Things

IIoT:

Industrial Internet of Things

IM:

Intelligent Manufacturing

ISA:

Intelligent Search Algorithm

IT:

Information Technologies

KHA:

Krill Herd Algorithm

LOA:

Lion Optimization Algorithm

LoRaWAN:

Long Range Wide Area Network

MSA:

Monkey Search Algorithm

M2M:

Machine-To-Machine

MCS:

Monte-Carlo-Simulation

ML:

Machine Learning

MPe:

Mass Personalization

NIOA:

Nature Inspired Optimization Algorithm

NP:

Non-deterministic Polynomial time

OIO:

Optics Inspired Optimization

OS:

Operating System

PFA:

Paddy Field Algorithm

PSS:

Product-Service System

PSO:

Particle Swarm Optimization

RFD:

River Formation Dynamics

SA:

Simulated Annealing

SFLA:

Shuffled Frog Leaping Algorithm

SOA:

Spiral Optimization Algorithm

SSO:

Social Spider Optimization

SCN:

Supply Chain Network

SDG:

Sustainable Development Goal

SME:

Small and Medium sized Enterprises

TS:

Tabu Search

WSN:

Wireless Sensor Networks

References

  1. Tao F, Qi Q, Liu A, Kusiak A (2018) Data-driven smart manufacturing. J Manuf Syst 48:157–169

    Article  Google Scholar 

  2. Liu X, Zheng L, Wang Y, Yang W, Jiang Z, Wang B, Tao F, Li Y (2022) Human-centric collaborative assembly system for large-scale space deployable mechanism driven by Digital Twins and wearable AR devices. J Manuf Syst 65:720–742

    Article  Google Scholar 

  3. Lee J, Siahpour S, Jia X, Brown P (2022) Introduction to resilient manufacturing systems. Manuf Lett 32:24–27

    Article  Google Scholar 

  4. Ford H, Crowther S (1922) My life and work. Binker North

    Google Scholar 

  5. Mourtzis, D (2021) Design and operation of production networks for mass personalization in the era of cloud technology pp 1–393

    Google Scholar 

  6. Tolio T, Bernard A, Colledani M, Kara S, Seliger G, Duflou J, Battaia O, Takata S (2017) Design, management and control of demanufacturing and remanufacturing systems. CIRP Ann 66(2):585–609

    Article  Google Scholar 

  7. Smart Factory Market Size, Share & Segment by Component (Industrial Robots, Machine Vision, Sensors, Industrial 3D Printing) by solution (SCADA, PLC, DCS, MES, PLM, ERP, HMI, PAM) by industry (process industries and discrete industries) by regions, and global forecast 2023–2030. https://www.snsinsider.com/reports/smart-factory-market-1391

  8. Geissbauer R, Lübben E, Schrauf S, Pillsbury S (2018) How industry leaders build integrated operations ecosystems to deliver end-to-end customer solutions. Glob Digit Oper

    Google Scholar 

  9. Upadhyay A, Balodi KC, Naz F, Di Nardo M, Jraisat L (2023) Implementing industry 4.0 in the manufacturing sector: circular economy as a societal solution. Comput Ind Eng 109072

    Google Scholar 

  10. Stavropoulos P, Mourtzis D (2022) Digital twins in industry 4.0. In: Design and operation of production networks for mass personalization in the era of cloud technology. Elsevier, pp 277–316

    Google Scholar 

  11. Shiroishi Y, Uchiyama K, Suzuki N (2019) Better actions for society 5.0: using AI for evidence-based policy making that keeps humans in the loop. Computer 52(11):73–78

    Google Scholar 

  12. Gladden ME (2019) Who will be the members of Society 5.0? Towards an anthropology of technologically posthumanized future societies. Soc Sci 8(5):148

    Google Scholar 

  13. Leng J, Sha W, Wang B, Zheng P, Zhuang C, Liu Q, Wuest T, Mourtzis D, Wang L (2022) Industry 5.0: prospect and retrospect. J Manuf Syst 65:279–295

    Article  Google Scholar 

  14. Mourtzis D, Angelopoulos J, Panopoulos N (2022) A literature review of the challenges and opportunities of the transition from industry 4.0 to society 5.0. Energies 15(17):6276

    Google Scholar 

  15. Huang S, Wang B, Li X, Zheng P, Mourtzis D, Wang L (2022) Industry 5.0 and society 5.0—comparison, complementation and co-evolution. J Manuf Syst 64:424–428

    Article  Google Scholar 

  16. Demir KA, Döven G, Sezen B (2019) Industry 5.0 and human-robot co-working. Procedia Comput Sci 158:688–695

    Article  Google Scholar 

  17. Fukuyama M (2018) Society 5.0: aiming for a new human-centered society. Jpn Spotlight 27(5):47–50

    Google Scholar 

  18. Aceto G, Persico V, Pescapé A (2019) A survey on information and communication technologies for industry 4.0: state-of-the-art, taxonomies, perspectives, and challenges. IEEE Commun Surv Tutor 21(4):3467–3501

    Google Scholar 

  19. Mourtzis D, Doukas M (2013) Decentralized manufacturing systems review: challenges and outlook. In: Robust manufacturing control: proceedings of the CIRP sponsored conference RoMaC 2012, Bremen, Germany, 18th–20th June 2012. Springer, Berlin, pp 355–369

    Google Scholar 

  20. Chryssolouris G, Alexopoulos K, Arkouli Z (2023) Artificial intelligence in manufacturing systems. In: A perspective on artificial intelligence in manufacturing. studies in systems, decision and control, vol 436. Springer, Cham

    Google Scholar 

  21. Bergs T, Biermann D, Erkorkmaz K, M'Saoubi R (2023) Digital twins for cutting processes. CIRP Ann. Accessed 2023 May 27.

    Google Scholar 

  22. Hermann E (2022) Artificial intelligence and mass personalization of communication content—an ethical and literacy perspective. New Media Soc 24(5):1258–1277

    Article  Google Scholar 

  23. Mourtzis D, Angelopoulos J, Panopoulos N (2023) The future of the human–machine interface (HMI) in society 5.0. Future Internet 15(5):162

    Google Scholar 

  24. Freitag M, Becker T, Duffie NA (2015) Dynamics of resource sharing in production networks. CIRP Ann 64(1):435–438

    Article  Google Scholar 

  25. Aheleroff S, Mostashiri N, Xu X, Zhong RY (2021) Mass personalisation as a service in industry 4.0: a resilient response case study. Adv Eng Inform 50:101438

    Google Scholar 

  26. Aheleroff S, Philip R, Zhong RY, Xu X (2019) The degree of mass personalisation under industry 4.0. Procedia CIRP 81:1394–1399

    Article  Google Scholar 

  27. Belkadi F, Boli N, Usatorre L, Maleki E, Alexopoulos K, Bernard A, Mourtzis D (2020) A knowledge-based collaborative platform for PSS design and production. CIRP J Manuf Sci Technol 29:220–231

    Article  Google Scholar 

  28. Mourtzis D, Fotia S, Boli N, Pittaro P (2018) Product-service system (PSS) complexity metrics within mass customization and Industry 4.0 environment. Int J Adv Manuf Technol 97:91–103

    Article  Google Scholar 

  29. Moser E, Verhaelen B, Haefner B, Lanza G (2021) Configuration and optimization of migration planning in global production networks. CIRP J Manuf Sci Technol 35:803–818

    Article  Google Scholar 

  30. Chryssolouris G (2013) Manufacturing systems: theory and practice. Springer Science & Business Media

    Google Scholar 

  31. Mourtzis D, Angelopoulos J, Panopoulos N (2021) A survey of digital B2B platforms and marketplaces for purchasing industrial product service systems: a conceptual framework. Procedia CIRP 97:331–336

    Article  Google Scholar 

  32. ElMaraghy H, Monostori L, Schuh G, ElMaraghy W (2021) Evolution and future of manufacturing systems. CIRP Ann 70(2):635–658

    Article  Google Scholar 

  33. Mourtzis D, Zogopoulos V, Vlachou K (2019) Frugal innovation and its application in manufacturing networks. Manuf Lett 20:27–29

    Article  Google Scholar 

  34. Mourtzis D, 62264 N, Mavrikios D, Makris S, Alexopoulos K (2015) The role of simulation in digital manufacturing: applications and outlook. Int J Comput Integr Manuf 28(1):3–24

    Google Scholar 

  35. Mourtzis D, Panopoulos N, Angelopoulos J (2022) Production management guided by industrial internet of things and adaptive scheduling in smart factories. In: Design and operation of production networks for mass personalization in the era of cloud technology. Elsevier, pp 117–152

    Google Scholar 

  36. Lanza G, Treber S (2019) Transparency increase in global production networks based on multi-method simulation and metamodeling techniques. CIRP Ann 68(1):439–442

    Article  Google Scholar 

  37. Kolbjørnsrud V, Amico R, Thomas RJ (2016) How artificial intelligence will redefine management. Harv Bus Rev 2(1):3–10

    Google Scholar 

  38. Bailey J, Weber T, Horton R, Zorn M (2022) Developing insightful management reporting | Standardise management reporting to support strategy execution. https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/finance-transformation/ch-en-developing-insighful-management-reporting.pdf

  39. United Nations.‏ Department of Economic and Social Affairs (2022) The sustainable development goals: report 2022. UN. https://unstats.un.org/sdgs/report/2022/

  40. Moldavska A, Welo T (2019) A Holistic approach to corporate sustainability assessment: Incorporating sustainable development goals into sustainable manufacturing performance evaluation. J Manuf Syst 50:53–68

    Article  Google Scholar 

  41. Qin Z, Lu Y (2021) Self-organizing manufacturing network: a paradigm towards smart manufacturing in mass personalization. J Manuf Syst 60:35–47

    Article  Google Scholar 

  42. Schuh G, Prote JP, Dany S (2017) Reference process for the continuous design of production networks. In: 2017 IEEE international conference on industrial engineering and engineering management (IEEM). IEEE, pp 446–449

    Google Scholar 

  43. Ferdows K, Vereecke A, De Meyer A (2016) Delayering the global production network into congruent subnetworks. J Oper Manag 41:63–74

    Article  Google Scholar 

  44. Moser E, Stricker N, Lanza G (2016) Risk efficient migration strategies for global production networks. Procedia CIRP 57:104–109

    Article  Google Scholar 

  45. Ferdows K (2018) Keeping up with growing complexity of managing global operations. Int J Oper Prod Manag

    Google Scholar 

  46. Mourtzis D, Doukas M (2014) Design and planning of manufacturing networks for mass customisation and personalisation: challenges and outlook. Procedia Cirp 19:1–13

    Article  Google Scholar 

  47. Benfer M, Ziegler M, Gützlaff A, Fränken B, Cremer S, Prote JP, Schuh G (2019) Determination of the abstraction level in production network models. Procedia CIRP 81:198–203

    Article  Google Scholar 

  48. Schuh G, Gützlaff A, Schollemann A (2022) Reduction of planning efforts for decision making under uncertainty in global production network design. CIRP Ann 71(1):385–388

    Article  Google Scholar 

  49. Krebs P, Reinhart G (2012) Evaluation of interconnected production sites taking into account multidimensional uncertainties. Prod Eng Res Devel 6:587–601

    Article  Google Scholar 

  50. Cheng Y, Farooq S, Johansen J (2015) International manufacturing network: past, present, and future. Int J Oper Prod Manag

    Google Scholar 

  51. Lanza G, Ude J (2010) Multidimensional evaluation of value added networks. CIRP Ann 59(1):489–492

    Article  Google Scholar 

  52. Hochdörffer J, Buergin J, Vlachou E, Zogopoulos V, Lanza G, Mourtzis D (2018) Holistic approach for integrating customers in the design, planning, and control of global production networks. CIRP J Manuf Sci Technol 23:98–107

    Article  Google Scholar 

  53. Schuh G, Potente T, Varandani R, Schmitz T (2014) Global footprint design based on genetic algorithms–an “Industry 4.0” perspective. CIRP Ann 63(1):433–436

    Google Scholar 

  54. Koberstein A, Lukas E, Naumann M (2013) Integrated strategic planning of global production networks and financial hedging under uncertain demands and exchange rates. BuR-Bus Res 6(2)

    Google Scholar 

  55. Angelis J (2015) Strategic management of global manufacturing networks

    Google Scholar 

  56. Mourtzis D, Fotia S, Boli N, Vlachou E (2019) Modelling and quantification of industry 4.0 manufacturing complexity based on information theory: a robotics case study. Int J Prod Res 57(22):6908–6921

    Google Scholar 

  57. Schuh G, Potente T, Varandani RM, Schmitz T (2013) Methodology for the assessment of structural complexity in global production networks. Procedia CIRP 7:67–72

    Article  Google Scholar 

  58. Peukert S, Hörger M, Lanza G (2023) Fostering robustness in production networks in an increasingly disruption-prone world. CIRP J Manuf Sci Technol 41:413–429

    Article  Google Scholar 

  59. Najjar M, Yasin MM (2021) The management of global multi-tier sustainable supply chains: a complexity theory perspective. Int J Prod Res 1–18

    Google Scholar 

  60. Lanza G, Ferdows K, Kara S, Mourtzis D, Schuh G, Váncza J, Wang L, Wiendahl HP (2019) Global production networks: design and operation. CIRP Ann 68(2):823–841

    Article  Google Scholar 

  61. Lanza G, Treber S (2019) Transparency increase in global production networks based on multi-method simulation and metamodeling techniques. CIRP Ann 68(1):439–442

    Article  Google Scholar 

  62. Zhong RY, Xu X, Klotz E, Newman ST (2017) Intelligent manufacturing in the context of industry 4.0: a review. Engineering 3(5):616–630

    Google Scholar 

  63. Mourtzis D, Angelopoulos J, Panopoulos N (2022) Industry 4.0 and smart manufacturing. In: Reference module in materials science and materials engineering. Elsevier

    Google Scholar 

  64. Ivanov D (2020) Predicting the impacts of epidemic outbreaks on global supply chains: a simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transp Res Part E: Logist Transp Rev 136:101922

    Article  Google Scholar 

  65. Ivanov D (2022) Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic. Ann Oper Res 319(1):1411–1431

    Article  MathSciNet  Google Scholar 

  66. Ivanov D, Dolgui A, Sokolov B (2019) The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. Int J Prod Res 57(3):829–846

    Google Scholar 

  67. Mourtzis D, Panopoulos N (2022) Digital transformation process towards resilient production systems and networks. In: Dolgui A, Ivanov D, Sokolov B (eds) Supply network dynamics and control. Springer series in supply chain management, vol 20. Springer, Cham

    Google Scholar 

  68. Lanza G, Moser R (2014) Multi-objective optimization of global manufacturing networks taking into account multi-dimensional uncertainty. CIRP Ann – Manuf Technol 63(1):397–400

    Google Scholar 

  69. Singhal P, Agarwal G, Mittal ML (2011) Supply chain risk management: review, classification and future research directions. Int J Bus Sci Appl Manag (IJBSAM) 6(3):15–42

    Google Scholar 

  70. Thun JH, Hoenig D (2011) An empirical analysis of supply chain risk management in the German automotive industry. Int J Prod Econ 131(1):242–249

    Article  Google Scholar 

  71. Baghersad M, Zobel CW (2021) Assessing the extended impacts of supply chain disruptions on firms: an empirical study. Int J Prod Econ 231:107862

    Article  Google Scholar 

  72. Peters MA (2019) Technological unemployment: Educating for the fourth industrial revolution. In: The Chinese dream: educating the future. Routledge, pp 99–107

    Google Scholar 

  73. Yeung HWC (2018) The logic of production networks. The new Oxford handbook of economic geography 1:382–406

    Google Scholar 

  74. Dolgui A, Ivanov D (2021) Ripple effect and supply chain disruption management: new trends and research directions. Int J Prod Res 59(1):102–109

    Article  Google Scholar 

  75. Koren Y, Heisel U, Jovane F, Moriwaki T, Pritschow G, Ulsoy G, Van Brussel H (1999) Reconfigurable manufacturing system. CIRP Ann 48(2):527–540

    Article  Google Scholar 

  76. Epureanu BI, Li X, Nassehi A, Koren Y (2020) Self-repair of smart manufacturing systems by deep reinforcement learning. CIRP Ann 69(1):421–424

    Article  Google Scholar 

  77. Ma A, Nassehi A, Snider C (2019) Anarchic manufacturing. Int J Prod Res 57(8):2514–2530

    Article  Google Scholar 

  78. Putnik GD, Škulj G, Varela L, Butala P (2015) Simulation study of large production network robustness in uncertain environment. CIRP Ann 64(1):439–442

    Article  Google Scholar 

  79. Tsutsumi D, Gyulai D, Kovács A, Tipary B, Ueno Y, Nonaka Y, Monostori L (2018) Towards joint optimization of product design, process planning and production planning in multi-product assembly. CIRP Ann 67(1):441–446

    Article  Google Scholar 

  80. Epureanu BI, Li X, Nassehi A, Koren Y (2021) An agile production network enabled by reconfigurable manufacturing systems. CIRP Ann 70(1):403–406

    Article  Google Scholar 

  81. Chen Y, Luo H, Chen J, Guo Y (2022) Building data-driven dynamic capabilities to arrest knowledge hiding: a knowledge management perspective. J Bus Res 139:1138–1154

    Article  Google Scholar 

  82. Lee J, Singh J, Azamfar M (2019) Industrial artificial intelligence. arXiv:1908.02150

  83. Yang XS (2020) Nature-inspired optimization algorithms. Academic Press

    Google Scholar 

  84. Igiri CP, Bhargava D, Ekwomadu T, Kasali F, Isong B (2022) Bio-inspired ant lion optimizer for a constrained petroleum product scheduling. IEEE Access 10:94986–94997

    Article  Google Scholar 

  85. Trojovský P, Dehghani M, Hanuš P (2022) Siberian tiger optimization: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems. IEEE Access 10:132396–132431

    Article  Google Scholar 

  86. Trojovská E, Dehghani M, Trojovský P (2022) Zebra optimization algorithm: a new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access 10:49445–49473

    Article  Google Scholar 

  87. Liu B (2023) Integration of novel uncertainty model construction of green supply chain management for small and medium-sized enterprises using artificial intelligence. Optik 273:170411

    Article  Google Scholar 

  88. Santos JA, Sousa JM, Vieira SM, Ferreira AF (2022) Many-objective optimization of a three-echelon supply chain: a case study in the pharmaceutical industry. Comput Ind Eng 173:108729

    Article  Google Scholar 

  89. Kumar A, Nadeem M, Banka H (2023) Nature inspired optimization algorithms: a comprehensive overview. Evol Syst 14:141–156

    Article  Google Scholar 

  90. Ponticelli GS, Guarino S, Tagliaferri V, Giannini O (2019) An optimized fuzzy-genetic algorithm for metal foam manufacturing process control. Int J Adv Manuf Technol 101:603–614

    Article  Google Scholar 

  91. Zou J, Chang Q, Ou X, Arinez J, Xiao G (2019) Resilient adaptive control based on renewal particle swarm optimization to improve production system energy efficiency. J Manuf Syst 50:135–145

    Article  Google Scholar 

  92. Silva CA, Sousa JMC, Runkler TA, Da Costa JS (2009) Distributed supply chain management using ant colony optimization. Eur J Oper Res 199(2):349–358

    Article  MathSciNet  Google Scholar 

  93. Xu X, Hao J, Zheng Y (2020) Multi-objective artificial bee colony algorithm for multi-stage resource leveling problem in sharing logistics network. Comput Ind Eng 142:106338

    Article  Google Scholar 

  94. Elkhechafi M, Benmamoun Z, Hachimi H, Amine A, Elkettani Y (2018) Firefly algorithm for supply chain optimization. Lobachevskii J Math 39:355–367

    Article  MathSciNet  Google Scholar 

  95. Sadeghi AH, Bani EA, Fallahi A, Handfield R (2023) Grey wolf optimizer and whale optimization algorithm for stochastic inventory management of reusable products in a two-level supply chain. IEEE Access 11:40278–40297

    Article  Google Scholar 

  96. Shehab M, Khader AT, Al-Betar MA (2017) A survey on applications and variants of the cuckoo search algorithm. Appl Soft Comput 61:1041–1059

    Article  Google Scholar 

  97. Yang X-S, Deb S, Fong S (2014) Metaheuristic algorithms: optimal balance of intensification and diversification. Appl Math Inf Sci 8(3):977

    Article  Google Scholar 

  98. Talbi E-G (2009) Metaheuristics: from design to implementation, vol 74. Wiley, Amsterdam

    Book  Google Scholar 

  99. Fernández-Vargas JA, Bonilla-Petriciolet A, Rangaiah GP, Fateen S-EK (2016) Performance analysis of stopping criteria of population-based metaheuristics for global optimization in phase equilibrium calculations and modeling. Fluid Phase Equilib 427:104–125

    Article  Google Scholar 

  100. Chong JW, Kim W, Hong JS (2022) Optimization of apparel supply chain using deep reinforcement learning. IEEE Access 10:100367–100375

    Article  Google Scholar 

  101. Wan J, Li X, Dai H-N, Kusiak A, Martínez-García M, Li D (2021) Artificial-intelligence-driven customized manufacturing factory: key technologies, applications, and challenges. Proc IEEE 109(4):377–398. Accessed 4 Apr 2021

    Google Scholar 

  102. Bein W, Pickl S, Tao F (2019) Data analytics and optimization for decision support. Bus Inf Syst Eng 61:255–256

    Article  Google Scholar 

  103. Dotsenko S, Fesenko H, Illiashenko O, Kharchenko V, Moiseenko V, Yermolenko L (2020) Integration of security, functional and ecology safety management systems: concept and industrial case. In: 2020 IEEE 11th international conference on dependable systems, services and technologies (DESSERT). IEEE, pp 470–474

    Google Scholar 

  104. Papakostas N, Newell A, George A (2020) An agent-based decision support platform for additive manufacturing applications. Appl Sci 10(14):4953

    Article  Google Scholar 

  105. Duffuaa S, Kolus A, Al-Turki U, El-Khalifa A (2020) An integrated model of production scheduling, maintenance and quality for a single machine. Comput Ind Eng 1(142):106239

    Article  Google Scholar 

  106. Mourtzis D, Zogopoulos V, Xanthi F (2019) Augmented reality application to support the assembly of highly customized products and to adapt to production re-scheduling. Int J Adv Manuf Technol 105:3899–3910

    Article  Google Scholar 

  107. Dutta P, Choi TM, Somani S, Butala R (2020) Blockchain technology in supply chain operations: applications, challenges and research opportunities. Transp Res Part E: Logist Transp Rev 142:102067

    Article  Google Scholar 

  108. Zhang Z, Chen Z, Xu L (2022) Artificial intelligence and moral dilemmas: perception of ethical decision-making in AI. J Exp Soc Psychol 101:104327

    Article  Google Scholar 

  109. Kádár B, Egri P, Pedone G, Chida T (2018) Smart, simulation-based resource sharing in federated production networks. CIRP Ann 67(1):503–506

    Article  Google Scholar 

  110. Rodgers W, Murray JM, Stefanidis A, Degbey WY, Tarba SY (2023) An artificial intelligence algorithmic approach to ethical decision-making in human resource management processes. Hum Resour Manag Rev 33(1):100925

    Google Scholar 

  111. Charlwood A, Guenole N (2022) Can HR adapt to the paradoxes of artificial intelligence? Hum Resour Manag J 32(4):729–742

    Article  Google Scholar 

  112. Esposito C, Castiglione A, Martini B, Choo K-KR (2016) Cloud manufacturing: security, privacy, and forensic concerns. IEEE Cloud Comput 3(4):16–22

    Article  Google Scholar 

  113. Gao R, Wang L, Teti R, Dornfeld D, Kumara S, Mori M, Helu M (2015) Cloud-enabled prognosis for manufacturing. CIRP Ann 64(2):749–772

    Article  Google Scholar 

  114. Helu M, Hedberg T (2020) Connecting, deploying, and using the smart manufacturing systems test bed. NIST advanced manufacturing series 200–2. National Institute of Standards and Technology

    Google Scholar 

  115. Hedberg TD, Krima S, Camelio JA (2019) Method for enabling a root of trust in support of product-data certification and traceability. J Comput Inf Sci Eng. 19(4). https://doi.org/10.1115/1.4042839

  116. National Institute of Standards and Technology (2018) FIPS general information

    Google Scholar 

  117. Váncza J, Monostori L, Lutters D, Kumara SR, Tseng M, Valckenaers P, Van Brussel H (2011) Cooperative and responsive manufacturing enterprises. CIRP Ann 60(2):797–820

    Article  Google Scholar 

  118. Schuh G, Monostori L, Csáji BC, Döring S (2008) Complexity-based modeling of reconfigurable collaborations in production industry. CIRP Ann 57(1):445–450

    Article  Google Scholar 

  119. Kates RW, Clark WC, Corell R, Hall JM, Jaeger CC, Lowe I, McCarthy JJ, Schellnhuber HJ, Bolin B, Dickson NM, Faucheux S, Gallopin GC, Grübler A, Huntley B, Jäger J, Jodha NS, Kasperson RE, Mabogunje A, Matson P, Mooney H, Moore B 3rd, O'Riordan T, Svedlin U. (2021) Environment and development. Sustainability science. Science. 27;292(5517):641–642 (2001 Apr)

    Google Scholar 

  120. Monostori L, Kádár B, Bauernhansl T, Kondoh S, Kumara S, Reinhart G, Sauer O, Schuh G, Sihn W, Ueda K (2016) Cyber-physical systems in manufacturing. CIRP Ann 65(2):621–641

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Mourtzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 CIRP

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mourtzis, D., Panopoulos, N., Stavropoulos, P., Papakostas, N. (2024). Artificial Intelligence for Production Management and Control Towards Mass Personalization of Global Networks. In: Tolio, T. (eds) CIRP Novel Topics in Production Engineering: Volume 1. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-54034-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54034-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54033-2

  • Online ISBN: 978-3-031-54034-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics