Skip to main content

Cadmium Removal from Aqueous Solutions Using Differents Biosorbents

  • Chapter
  • First Online:
Cadmium Toxicity in Water

Abstract

Cadmium is a compound toxic, which can induce adverse effects on the different organs like heart, kidneys, liver, lung, and their exposition has been linked with cancer in humans, hence important remove it of sites contaminated with it. Some methods are used to eliminate this metal from differents contaminated places. The objective of the present work, was analyze the remediation of the heavy metal with nine natural obtained from fungal strains fungi from samples of soil contaminated of zone high-rish, and one of a place near the Universitary zone of San Luis Potosí, S.L.P., México, finding that the biomasses of Purpureocillim lilacinium, Aspergillus flavus, Penicillium sp-1, and Aspergillus terreus, had the best removal rates of the metal (with dithizone at 518 nm), with a removal between 76 and 99%, in the conditions analyzed. These biomasses are a great alternative for the elimination of this and other contaminants from the different high-risk sites, and in this study, the hability of eliminate this contaminant by environmental polluting fungus strain of Purpureocillim lilacinium, was analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta, I., Moctezuma Zárate, M. G., Cárdenas, J. F., & Gutiérrez, C. (2007). Bioadsorción de Cadmio (II) en solución acuosa por biomasas fúngicas. Revista Información Tecnológica de Chile, 18(1), 9–14. https://doi.org/10.4067/S0718-07642007000100003

    Article  CAS  Google Scholar 

  2. Al-Garni, S. M., Ghanem, K. M., & Bahobail, A. D. (2009). Biosorption characteristics of Aspergillus fumigatus in removal of cadmium from an aqueous solution. African Journal of Biotechnology., 8(17), 4163–4172. https://doi.org/10.5897/AJB2009.000-9401

    Article  CAS  Google Scholar 

  3. Al-Homaidan, A. A., Alabdullatif, J. A., Al-Hazzani, S. A. A., Al-Ghanayem, A. A., & Alabbad, A. F. (2015). Adsorptive removal of cadmium ions by Spirulina platensis biomass. Saudi Journal of Biological Sciences., 22(6), 795–800. https://doi.org/10.1016/j.sjbs.2015.06.010

    Article  CAS  Google Scholar 

  4. Ali, E. A. M., Sayed, M. A., Abdel-Rahman, T. M. A., & Hussein, R. (2021). Fungal remediation of Cd(II) from wastewater using immobilization techniques. RSC Advances, 11, 4853–4863. https://doi.org/10.1039/d0ra08578b

    Article  CAS  Google Scholar 

  5. Anayurt, R. A., Sari, A., & Tuzen, M. (2009). Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius Scrobiculatus) biomass. Chemical Engineering Journal, 151, 255–261. https://doi.org/10.1016/j.cej.2009.03.002

  6. Apaza Aquino, H., & Valderrama Valencia, M.R. 2020. Aislamiento de cepas fúngicas de una poza de relaves para la biorremediación de plomo y cadmio. UVC Hacer. Revista de Investigación y Cultura. Universidad Cesar Vallejo, 9(4), 1–8. https://orcid.org/0000-0002-1515-3195

  7. Apaza Aquino, H., Valderrama Valencia, M. R. (2020). Eficiencia del la biomasa de Rhizopus sp., en la remoción de cadmio (II). Universidad Nacional del Altiplano. Revista de Investigaciones de la Escuela de Posgrado, 9(4), 11805–1816. https://doi.org/10.26788/riepg.2020.4.192

  8. Aranda-Coello, J. M., Mendoza-Velázquez, O. M., & Gutiérrez-Olvera, C. (2023). Metales pesados en escamas caudales de Crocodylus moreletii en la porción sur de la selva lacandona, Chiapas, México. Revista Internacional de Contaminación Ambiental, 39, 85–94. https://doi.org/10.20937/RICA.54454

  9. Arbaiza-Peña, A. K., Grober Panduro-Isco, G., Díaz-Zúñiga, E. J., Guadalupe-Baylon, N. K., Angulo-García, N., & Iannacone, J. (2022). Composición elemental y de metales pesados en los residuos de palma en la Amazonia Peruana. Tropical and Subtropical Agroecosystems, 25(083), 1–11. https://doi.org/10.56369/tsaes.3967

  10. Astudillo, S., Vera, L., Astudillo, J., & Castro, C. (2020). Evaluación del poder biosorbente de la hoja de maíz en la remoción de metales pesados. AFINIDAD, LXXVII, 591, 182–188.

    Google Scholar 

  11. Bandurska, K., Krupa, P., Berdowska, A., Jatulewicz, I., & Zawierucha, I. (2021). Mycoremediation of soil contaminated with cadmium and lead by Trichoderma sp. Ecological Chemistry Engineering Sciendo, 28(2), 277–286. https://doi.org/10.2478/eces-2021-0020

    Article  CAS  Google Scholar 

  12. Benítez Colio, L. R. (2023). Concentración de As, Cd, Cu, Pb y Zn en órganos y tejidos de Rhinoptera steindachneri (Everman y Jenkins, 1981) capturado en la zona costera de marismas nacionales. México. Tesis que para obtener el grado de Maestria en Ciencias en Recursos Acuáticos en el Área de Manejo Sustentable de Recursos Costeros. Facultad de Ciencias del Mar. Maestría en Ciencias en Recursos Acuaticos. Mazatlán, Sinaloa, México. http://repositorio.uas.edu.mx/jspui/handle/DGB_UAS/191

  13. Bustamante-Montes, L. P., Flores-Polanco, J. A., Isaac-Olivé, K., Hernández-Téllez, M., Campuzano-González, M. E., & Ramírez-Durán, N. (2018). Estudio exploratorio sobre la asociación de metales pesados y la nefropatía de etiología desconocida en el poniente del estado de México. Revista Internacional de Contaminación Ambiental, 34(4), 555–564. https://doi.org/10.20937/RICA.2018.34.04.01

    Article  Google Scholar 

  14. Calderón García, L. R. (2022). Análisis de las aplicaciones de Pleurotus ostreatus como alternativa en la biorremediación de residuos mineros. Tesina. Para la obtención del Diploma de Especialidad en Gestión Ambiental de Residuos. Facultad de Ciencias Biológicas. Univdersidad Autónoma del Estado de Morelos. Cuernavaca, Morelos, México. http://riaa.uaem.mx/handle/20.500.12055/3367

  15. Cárdenas González, J. F., Acosta Rodríguez, I., Rodríguez Pérez, A. S., Martínez Juárez, V. M., Moctezuma Zárate, M. G., Pacheco Castillo, N. C., & Muñoz Morales, A. (2019). Bioremoval of heavy metals by the native strain Aspergillus niger. Modern Concept & Developments in Agronomy, 5(2), 525–534. https://doi.org/10.31031/MCDA.2019.05.000610

    Article  Google Scholar 

  16. Cárdenas González, J. F., Acosta Rodríguez, I., Terán Figueroa, Y., Lappe Oliveras, P., Martínez Flores, R., & Rodríguez Pérez, A. S. (2021). Biotransformation of Chromium (VI) via a reductant activity from the fungal strain Purpureocillium lilacinum. Journal of Fungi, 7(1022), 1–14. https://doi.org/10.3390/jof7121022. 29 November 2021.

  17. Chávez-Gómez, N., Cabello-López, A., Gopar-Nieto, R., Aguilar-Madrid, G., Marín-López, K., Aceves-Valdez, M., Jiménez-Ramírez, C., Cruz-Angulo, M., & Juárez-Pérez, C. (2017). Enfermedad renal crónica en México y su relación con los metales pesados. Revista Médica del Instituto Mexicano del Seguro Social, 55(6), 725–734. Medigraphic. https://www.medigraphic.com › new › resumen

  18. Cimá-Mukul, C. A., Abdellaoui, Y., Abatal, M., Vargas, J., Santiago, A. A., & Barrón-Zambrano, J. A. (2019). Eco-efficient biosorbent based on Leucaena leucocephala residues for the simultaneous removal of Pb(II) and Cd(II) ions from water system: Sorption and mechanism. Bioinorganic Chemical and Applications, 2019, 13. Article ID 2814047. https://doi.org/10.1155/2019/2814047

  19. Cruz Casanova, F. E. (2014). Efecto de la contaminación por metales pesados en los ecosistemas costeros del sureste de México. Kuxulkab, 19(37), 65–68. https://doi.org/10.19136/kuxulkab.a19n37.351

  20. Delgado Díaz, D. M., Zarza Villanueva, H., Flores Hernández, N., Cruz Monterrosa, R., Rayas Amor, A., Díaz Ramírez, M., Jiménez Guzmán, J., García Garibay, M., Miranda de la Lama, G., & Hernández Flores, L. I. (2019). Presencia de metales pesados en Pato Mexicano (Anas diazi Ridgway). Agro Productividad, 12(11), 89–92. https://doi.org/10.32854/agrop.vi0.1504

  21. Dey, P., Gola, D., Mishra, A., Malika, A., Kumar, P., Kumar Singh, D., Patel, N., von Bergend, M., & Jehmlich, N. (2016). Comparative performance evaluation of multi-metal resistant fungal strains for simultaneous removal of multiple hazardous metals. Journal of Hazardous Materials, 318(2016), 679–685. https://doi.org/10.1016/j.jhazmat.2016.07.025

    Article  CAS  Google Scholar 

  22. Din, G., Hassan, A., Dunlap, J., Ripp, S., & Shah, A. A. (2022). Cadmium tolerance and bioremediation potential of filamentous fungus Penicillium chrysogenum FMS2 isolated from soil. International Journal of Environmental Science and Technology, 19, 2761–2770. https://doi.org/10.1007/s13762-021-03211-7

    Article  CAS  Google Scholar 

  23. Dipannita, D., Pinky, B., Devi, N. N., & Mayuri, Ch. (2021). Biosorption of cadmium by fungi isolated from Bharalu river, Assam. Journal of Tropical Life Science, 11(3), 279–284 https://doi.org/10.11594/jtls.11.03.04

  24. Domínguez-Zúñiga, L. I., Puente-Valenzuela, C. T., Estrada-Arellano, J. R., Aguirre-Acosta, E., & Aguillón-Gutiérrez, D. R. (2022). Concentración de metales pesados en hongos de la zona metropolitana de la Comarca Lagunera, Mexico. Scientia Fungorum, 22(e1389), 1–10. https://doi.org/10.33885/sf.2021.52.1389

    Article  Google Scholar 

  25. Fazli, M. M., Soleimani, N., Mehrasbi, M., Darabian, D. S., Mohammadi, J., & Ramazani, A. (2015). Highly cadmium tolerant fungi: Their tolerance and removal potential. Journal of Environmental Health Science & Engineering, 13(19), 1–9. https://doi.org/10.1186/s40201-015-0176-0

    Article  CAS  Google Scholar 

  26. Ghosh, S., Rusyn, I., Dmytruk, O. V., Dmytruk, K. V., Onyeaka, H., Gryzenhout, M., & Gafforov, Y. (2023). Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons. Frontiers in Bioengineering and Biotechnology, 11(1106973), 1–20. https://doi.org/10.3389/fbioe.2023.1106973

    Article  Google Scholar 

  27. Greenberg, A. E., Clesceri, L. S., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater. 18a. Ed. American Public Health Association. Washington DC

    Google Scholar 

  28. Guillama Barroso, G., Ramos Delgado, N. A., Sanjuan Galindo, R., Herrera Mendoza, R., Rivera Haro, J. A., & Quevedo Álvarez, O. (2022). Evaluación de la contaminación por As, Ni, Cu, Pb, Zn y Cr en sedimentos de la zona marino-costera asociada a la terminal marítima de Nuevitas, Cuba. Revista Internacional de Contaminación Ambiental, 38, 81–94. https://doi.org/10.20937/RICA.54080

  29. Gutiérrez, L. (2022). Remoción de metales pesados del punto RMoch6 del río Moche mediante biopolímero quitosano commercial. Revista Ciencia y Tecnología, 18(12), 205–214. https://doi.org/10.17268/rev.cyt.2022.01.15

    Article  Google Scholar 

  30. Gutiérrez, P., Aradillas, D., & Acosta, I. (2021). Aplicación de la biomasa de Eichhornia crassipes en la remoción de Cd+2 en aguas contaminadas por desechos industriales. Avances en Ciencias e Ingeniería, 12(3), 17–29. 20 de septiembre. http://www.executivebs.org/publishing.cl/category/revista-aci/

  31. Hayat, R., Din, G., Farooqi, A., et al. (2022). Characterization of melanin pigment from Aspergillus terreus LCM8 and its role in cadmium remediation. International Journal of Environmental Science and Technology, 20, 3151–3160. https://doi.org/10.1007/s13762-022-04165-0

    Article  CAS  Google Scholar 

  32. He, Y., Li, C., Sun, Z., Zhang, W., He, J., Zhao, Y., Xu, Z., & Zhao, W. (2023). Penicillium spp. XK10, fungi with potential to repair cadmium and antimony pollution. Applied Sciences, 13(1228), 1–13. https://doi.org/10.3390/app13031228

  33. Hernández-Caricio, C., Ramírez, V., Martínez, J., Quintero-Hernández, V., Baez, A., Munive, J. A., & Rosas-Murrieta, N. (2022). Los metales pesados en la historia de la humanidad, los efectos de la contaminación por metales pesados y los procesos biotecnológicos para su eliminación: El caso de Bacillus como bioherramienta para la recuperación de suelos. AyTBUAP, 7(27), 1–68. https://doi.org/10.5281/zenodo.7091407

    Article  Google Scholar 

  34. Ignatova, L., Kistaubayeva, A., Brazhnikova, Y., Omirbekova, A., Mukasheva, T., Savitskaya, I., Karpenyuk, T., Goncharova, A., Egamberdieva, D., & Sokolov, A. (2021). Characterization of cadmium-tolerant endophytic fungi isolated from soybean (Glycine max) and barley (Hordeum vulgare). Heliyon, 7(11), 1–9. https://doi.org/10.1016/j.jwliyon.2021.e08240

  35. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., Krishnamurthy, N., & Beeregowda, N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009

  36. Jeyakumar, P., Debnath, Ch., Vijayaraghavan, R., & Muthuraj. (2023). Review trends in bioremediation of heavy metal contaminations. Environmental Engineering Research, 28(4), 1–19, 220631. https://doi.org/10.4491/eer.2021

  37. Jingyi, D., Chaoyang, L., Yu, S., Yunlin, Z., Huimin, H., Yingzi, M., & Zhenggang, X. (2023). Adsorption capacity of Penicillium amphipolaria XK11 for cadmium and antimony. Archives of Microbiology, 205. Article number: 139. https://doi.org/10.1007/s00203-023-03484-1

  38. Khan, Z., Elahi, A., Bukhari, D. A., & Rehman, A. (2022). Cadmium sources, toxicity, resistance and removal by microorganisms. A potential strategy for cadmium eradication. Journal of Saudi Chemical Society, 26(6), 1–18, 101569. https://doi.org/10.1016/j.jscs.2022.101569

  39. Kirk, M. P., Cannon, F. P., David, C. J., & Stalpers, A. J. (2001). Dictionary of the fungi. CABI Publishing.

    Google Scholar 

  40. Lee, K., Buckley, L., & Campbell, C. C. (1975). An aminoacid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Journal of Medical Veterinary Mycology, 13(32), 148–153. https://doi.org/10.1080/00362177585190271

    Article  CAS  Google Scholar 

  41. Mehari, T. F., Rorie, Ch. J., Godfrey, S. S., Minor, R. C., Sayo O. & Fakayode, S. O. (2017). Influence of Arsenic (III), Cadmium (II), Chromium (VI), Mercury (II), and Lead (II) ions on human triple negative breast cancer (HCC1806) cell cytotoxicity and cell viability. Journal of Chemical Health Risks, 7(1), 1–17. https://doi.org/10.22034/JCHR.2017.544160

  42. Menchaca Dávila, S., & Ríos Fuentes, L. M. (2020). Análisis diacrónico de la contaminación por cadmio en la microcuenca del río Pixquiac, Veracruz. UVserva, 9, 8–19. https://doi.org/10.25009/uvs.v0i9.2644

  43. Mesa Pérez, M. A., Díaz Rizo, O., García Acosta, H., Alarcón Santos, O. A., Tavella, M. J., Bagué, D., Sánchez Pérez, J. M., Guerrero Domínguez, L., Hernández Rodríguez, D. H., & Díaz Almeida, C. M. (2021). Heavy metals bioaccumulation and risk estimation in edible freshwater fish from Pedroso Reservoir (Matabeque, Cuba). Revista Internacional de Contaminación Ambiental, 37, 527–537. https://doi.org/10.20937/RICA.53850

  44. Mohammadi, L., Sadeghi Malvajerdi, M., Rahdar, A., & Kyzas, G. Z. (2022). Optimization of cadmium ions biosorption onto Trichoderma fungi. Biointerfase Research in Applied Chemistry, 12(3), 3316–3331. https://doi.org/10.33263/BRIAC123.33163331

  45. Moreno-Rivas, S. C., & Clamont-Montfort, G. R. (2018). Descontaminación de arsénico, cadmio y plomo en agua por biosorción con Saccharomyces cerevisiae. TIP. Revista Especializada en Ciencias Químico-Biológicas, 2(2), 51–69. https://doi.org/10.22201/fesz.23958723e.2018.0.155

  46. Mushtaq, S., Bareen, F., & Tayyeb, A. (2023). Equilibrium kinetics and thermodynamic studies on biosorption of heavy metals by metal-resistant strains of Trichoderma isolated from tannery solid waste. Environmental Science and Pollution Research, 30(4), 10925–10954. https://doi.org/10.1007/s11356-022-22860-w

    Article  CAS  Google Scholar 

  47. Naranjo-Jiménez, C., & WingChing-Jones, R. (2023). Arsénico, cadmio, mercurio y plomo en alimentos importados para mascotas en Costa Rica. Agronomía Mesoamericana, 34(1), 1–13. Artículo 48399. https://doi.org/10.15517/am.v34i1.48399

  48. Narolkar, S., Jain, N., & Mishra, A. (2022). Biosorption of chromium by fungal strains isolated from industrial effluent contaminated area. Pollution, 8(1), 159–168. https://doi.org/10.22059/POLL.2021.326818.1132

    Article  CAS  Google Scholar 

  49. Olabemiwo, F. A., Tawabini, B. S., Patel, F., Oyehan, T. A., Khaled, M., & Laoui, T. (2017). Cadmium removal from contaminated water using polyelectrolyte-coated industrial waste fly ash. Bioinorganic Chemical and Applications, 2017, 13. Article ID 7298351. https://doi.org/10.1155/2017/7298351

  50. Ortíz Olguín, A. M., Lander Valenzuela, N., Edith Hernández Nataren, E., Lara Viveros, F., Granados Echegoyen, C. A., & Andrade Hoyos, P. (2023). Bioaccumulation of heavy metals in Cucumber plants inoculated with Trichoderma strains (Hypocreaceae) in the Mezquital Valley, Hidalgo, México. Revista Internacional de Contaminación Ambiental, 39, 117–126. https://doi.org/10.20937/RICA.54525

  51. Rehman, A., & Anjum, M. S. (2010). Cadmium uptake by yeast, Candida tropicalis, isolated from industrial effluents and its potential use in wastewater clean-up operations. Water Air Soil Pollution, 205, 149–159. https://doi.org/10.1007/s11270-009-0062-4

    Article  CAS  Google Scholar 

  52. Ren, Y. Y., Zhu, Z. Y., Dong, F. Y., & Song, Q. Y. (2018). Screening, characteristics and mechanism of Cd-tolerance Cunninghamella bertholletiae. Journal of Cleaner Production, 191(2018), 480–489. https://doi.org/10.1016/j.jclepro.2018.04.225

    Article  CAS  Google Scholar 

  53. Romero-Oliva, O. J., Acevedo-Sandoval, O. A., Prieto-García, F., & Prieto-Méndez, J. (2023). Riesgo toxicológico por plomo, cadmio y manganese en suelos DR028, Tulancingo, Hidalgo, México. Ibn Sina–Revista electrónica semestral en Ciencias de la Salud, 14(1), 1–12. http://revistas.uaz.edu.mx/index.php/ibnsina

  54. Santos, M. P. O., Santos, M. V. N., Matos, R. S., Van Der Maas, A. S., Faria, M. C. S., Batista, B. L., Rodrigues, J. L., & Bomfeti, C. A. (2021). Pleurotus strains with remediation potential to remove toxic metals from Doce River contaminated by Samarco dam mine. International Journal of Environmental Science and Technology, 19, 6625–6638. https://doi.org/10.1007/s13762-021-03597-4

  55. Soleimani, N., Mohammadian Fazli, M., Ramazani, A., & Mehrasbi, M. R. (2016). Application of live, dead, and dried biomasses of Aspergillus Versicolor for cadmium biotreatment. Journal of Human, Environment Health Promotion, 1(2), 87–98. https://doi.org/10.29252/jhehp.1.2.87

    Article  Google Scholar 

  56. Sun, Y. M., Horng, C. Y., Chang, F. L., Cheng, L. C., & Tian, W. X. (2010). Biosorption of lead, mercury, and cadmium ions by Aspergillus terreus immobilized in a natural matrix. Polish Journal of Microbiology, 59(1), 37–44. PMID: 20568528.

    Article  CAS  Google Scholar 

  57. Tarfeen, N., Nisa, K. I., Hamid, B., Bashir, Z., Yatoo, A. M., Dar, M. A., Mohiddin, F. A., Amin, Z., Ahmad, R. A., & Sayyed, R. Z. (2022). Microbial remediation: A promising tool for reclamation of contaminated sites with special emphasis on heavy metal and pesticide pollution: A review. Processes, 10(1358), 1–27. https://doi.org/10.3390/pr10071358

    Article  CAS  Google Scholar 

  58. Tulcan Rivera, M. I., & Coyago Cruz, E. (2022). Evaluación de metales pesados en nísperos (Eriobotrya japonica) cultivados en la sección urbana del distrito metropolitano de Quito. Tesis Posgrado. Maestría en Recursos Naturales Renovables con Mención en Remediación y Restauración. Universidad Politécnica Saleciana. http://dspace.ups.edu.ec/handle/123456789/25016

  59. U.S. Environmental Protection Agency. Deposition of air pollutants to the great waters. First Report to Congress. EPA-453/R-93-055. Office of Air Quality Planning and Standards, Research Triangle Park, NC, 1994. https://www.epa.gov ›default›files›documents.

  60. Villalba-Villalba, A. G., & González-Méndez, B. (2021). Evaluating Aspergillus terreus tolerance to toxic metals. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 27(3), 449–464. https://doi.org/10.5154/r.rchscfa.2020.07.047

    Article  Google Scholar 

  61. Xie, H., Zhao, Q., Zhou, Z., Wu, Y., Wang, H., & Xu, H. (2015). Efficient removal of Cd(II) and Cu(II) from aqueous solution by magnesium chloride-modified Lentinula edodes. Royal Society Chemistry Advances, 5, 33478–33488. https://doi.org/10.1039/C4RA17272H

    Article  CAS  Google Scholar 

  62. Yaghoubian, Y., Siadat, S. A., Moradi Telavat, M. R., Pirdashti, H., & Yaghoubian, I. (2019). Bio-removal of cadmium from aqueous solutions by filamentous fungi: Trichoderma spp. and Piriformospora indica. Environmental Science and Pollution Research, 26, 7863–7872. https://doi.org/10.1007/s11356-019-04255-6

    Article  CAS  Google Scholar 

  63. Zaki, A., Hasanien, Y. A., & Abdel-Razek, A. S. (2022). Biosorption optimization of lead(II) and cadmium(II) ions by two novel nanosilica-immobilized fungal mutants. Journal of Applied Microbiology, 33(2), 987–1000. https://doi.org/10.1111/jam.15624

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Acosta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acosta, I., Rodríguez, A., Cárdenas, J.F., Martínez, V.M., Torre, M.E. (2024). Cadmium Removal from Aqueous Solutions Using Differents Biosorbents. In: Jha, A.K., Kumar, N. (eds) Cadmium Toxicity in Water. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-54005-9_8

Download citation

Publish with us

Policies and ethics