Skip to main content

Decomposed Human Motion Prior for Video Pose Estimation via Adversarial Training

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 920))

Included in the following conference series:

  • 239 Accesses

Abstract

Estimating human pose from video is a task that receives considerable attention due to its applicability in numerous 3D fields. The complexity of prior knowledge of human body movements poses a challenge to neural network models in the task of regressing keypoints. In this paper, we address this problem by incorporating motion prior in an adversarial way. Different from previous methods, we propose to decompose holistic motion prior to joint motion prior, making it easier for neural networks to learn from prior knowledge thereby boosting the performance on the task. We also utilize a novel regularization loss to balance accuracy and smoothness introduced by motion prior. Our method achieves 9% lower PA-MPJPE and 29% lower acceleration error than previous methods tested on 3DPW. The estimator proves its robustness by achieving impressive performance on in-the-wild dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kocabas, M., Athanasiou, N., Black, M.J.: Vibe: video inference for human body pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5253–5263 (2020)

    Google Scholar 

  2. Rempe, D., Birdal, T., Hertzmann, A., Yang, J., Sridhar, S., Guibas, L.J.: Humor: 3D human motion model for robust pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11488–11499 (2021)

    Google Scholar 

  3. Yuan, Y., Iqbal, U., Molchanov, P., Kitani, K., Kautz, J.: GLAMR: global occlusion-aware human mesh recovery with dynamic cameras. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11038–11049 (2022)

    Google Scholar 

  4. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)

    Google Scholar 

  5. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2252–2261 (2019)

    Google Scholar 

  6. Luo, Z., Golestaneh, S.A., Kitani, K.M.: 3D human motion estimation via motion compression and refinement. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  7. Li, R., Yang, S., Ross, D.A., Kanazawa, A.: AI choreographer: music conditioned 3D dance generation with AIST++. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13401–13412 (2021)

    Google Scholar 

  8. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: archive of motion capture as surface shapes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5442–5451 (2019)

    Google Scholar 

  9. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)

    Article  Google Scholar 

  10. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3349–3364 (2020)

    Article  Google Scholar 

  11. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5745–5753 (2019)

    Google Scholar 

  12. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  13. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement, arXiv preprint arXiv:1804.02767 (2018)

  14. Mehta, D., et al.: Monocular 3D human pose estimation in the wild using improved CNN supervision. In: 2017 International Conference on 3D Vision (3DV), pp. 506–516. IEEE (2017)

    Google Scholar 

  15. Von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 601–617 (2018)

    Google Scholar 

  16. Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5614–5623 (2019)

    Google Scholar 

  17. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)

  19. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the key-Area Research and Development Program of Guangdong Province (2020B0909050003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weixi Gu or Kai Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, W., Zhou, X., Yu, Z., Gu, W., Zhang, K. (2024). Decomposed Human Motion Prior for Video Pose Estimation via Adversarial Training. In: Arai, K. (eds) Advances in Information and Communication. FICC 2024. Lecture Notes in Networks and Systems, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-031-53963-3_35

Download citation

Publish with us

Policies and ethics