Skip to main content

Performance Analysis of ETSI GS QKD 014 Protocol in 5G/6G Networks

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 920))

Included in the following conference series:

Abstract

The advancement of mobile networks driven by the introduction of 5G/6G technologies has brought more complex security challenges for end-users. Certain services within these advanced networks demand the highest level of performance and security, as any vulnerabilities could lead to critical repercussions. One promising solution to address these concerns is Quantum Key Distribution (QKD), which leverages the principles of quantum physics to offer information-theoretically secure keys. In this study, we present the implementation of a version of the key delivery protocol outlined in the ETSI GS QKD 014 standard and evaluate its performance. Following the implementation, we propose an empirically derived model of key metrics based on regression analysis of experimental results to validate the efficiency and performance of the QKD key delivery protocol. Furthermore, we conduct a comprehensive analysis of potential use cases for this protocol in the context of 5G/6G networks, showcasing its effectiveness in enhancing security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/chronoxor/CppServer.

  2. 2.

    https://k6.io/open-source/.

References

  1. ITU-R: Minimum requirements related to technical performance for IMT-2020 radio interface(s) (2017)

    Google Scholar 

  2. Shafi, M., et al.: 5G: a tutorial overview of standards, trials, challenges, deployment and practice. IEEE J. Sel. Areas Commun. 35(6), 1201–1221 (2017). https://doi.org/10.1109/JSAC.2017.2692307

    Article  Google Scholar 

  3. Tariq, F., Khandaker, M.R.A., Wong, K., Imran, M.A., Bennis, M., Debbah, M.: A speculative study on 6G. IEEE Wirel. Commun. 27(4), 118–125 (2020). https://doi.org/10.1109/MWC.001.1900488

    Article  Google Scholar 

  4. Wang, C.-X., et al.: On the road to 6G: visions, requirements, key technologies, and testbeds. IEEE Commun. Surv. Tutorials 25(2), 905–974 (2023). https://doi.org/10.1109/COMST.2023.3249835

    Article  Google Scholar 

  5. Akpakwu, G.A., Silva, B., Hancke, G.P., Abu-Mahfouz, A.M.: A survey on 5G networks for the internet of things: communication technologies and challenges. IEEE Access 6, 3619–3647 (2017). https://doi.org/10.1109/ACCESS.2017.2779844

    Article  Google Scholar 

  6. Nguyen, D.C., et al.: 6G internet of things: a comprehensive survey. IEEE Internet Things J. 9(1), 359–383 (2022). https://doi.org/10.1109/JIOT.2021.3103320

    Article  Google Scholar 

  7. Soos, G., Ficzere, D., Varga, P.: Towards traffic identification and modeling for 5G application use-cases. Electronics 9(4) (2020). https://doi.org/10.3390/electronics9040640

  8. Mehic, M., Maurhart, O., Rass, S., Komosny, D., Rezac, F., Voznak, M.: Analysis of the public channel of quantum key distribution link. IEEE J. Quantum Electron. 53(5) (2017). https://doi.org/10.1109/JQE.2017.2740426

  9. Cao, Y., Zhao, Y., Wang, Q., Zhang, J., Ng, S.X., Hanzo, L.: The evolution of quantum key distribution networks: on the road to the qinternet. IEEE Commun. Surv. Tutorials 24(2), 839–894 (2022). https://doi.org/10.1109/COMST.2022.3144219

    Article  Google Scholar 

  10. Tsai, C.-W., Yang, C.-W., Lin, J., Chang, Y.-C., Chang, R.-S.: Quantum key distribution networks: challenges and future research issues in security. Appl. Sci. 11(9) (2021). https://doi.org/10.3390/app11093767

  11. Mehic, M., et al.: Quantum cryptography in 5G networks: a comprehensive overview. IEEE Commun. Surv. Tutorials, 1 (2023). https://doi.org/10.1109/COMST.2023.3309051

  12. Muheidat, F., Dajani, K., Lo’ai, A.T.: Security concerns for 5G/6G mobile network technology and quantum communication. Procedia Comput. Sci. 203, 32–40 (2022). https://doi.org/10.1016/j.procs.2022.07.007

    Article  Google Scholar 

  13. Wang, C., Rahman, A.: Quantum-enabled 6G wireless networks: opportunities and challenges. IEEE Wirel. Commun. 29(1), 58–69 (2022). https://doi.org/10.1109/MWC.006.00340

    Article  Google Scholar 

  14. Ali, M.Z., et al.: Quantum for 6G communication: a perspective. IET Quantum Commun. (2023). https://doi.org/10.1049/qtc2.12060

  15. ETSI GS QKD 004: Quantum Key Distribution (QKD); Application Interface, V2.1.1 (2020)

    Google Scholar 

  16. ETSI GS QKD 014: Quantum Key Distribution (QKD); Protocol and data format of REST-based key delivery API, V1.1.1 (2019)

    Google Scholar 

  17. Cho, J.Y., Sergeev, A.: Using QKD in MACsec for secure ethernet networks. IET Quantum Commun. (2021). https://doi.org/10.1049/qtc2.12006

  18. Stan, C., Garcia, C.R., Cimoli, B., Olmos, J.J.V., Monroy, I.T., Rommel, S.: Securing communication with quantum key distribution: implications and impact on network performance. In: Optica Advanced Photonics Congress (2022). https://doi.org/10.1364/SPPCOM.2022.SpW2J.2

  19. Cho, J.Y., et al.: Demonstration of software-defined key management for quantum key distribution network. In: Optical Fiber Communications Conference and Exhibition (2021)

    Google Scholar 

  20. Lou, D., et al.: Benchmark performance of digital QKD platform using quantum permutation pad. IEEE Access 10, 107 066–107 076 (2022). https://doi.org/10.1109/ACCESS.2022.3212738

  21. Mehic, M., Rass, S., Dervisevic, E., Voznak, M.: Tackling denial of service attacks on key management in software-defined quantum key distribution networks. IEEE Access 10, 110 512–110 520 (2022). https://doi.org/10.1109/ACCESS.2022.3214511

  22. Nguyen, V.-L., Lin, P.-C., Cheng, B.-C., Hwang, R.-H., Lin, Y.-D.: Security and privacy for 6G: a survey on prospective technologies and challenges. IEEE Commun. Surv. Tutorials 23(4), 2384–2428 (2021). https://doi.org/10.1109/COMST.2021.3108618

    Article  Google Scholar 

  23. Chorti, A., et al.: Context-aware security for 6G wireless: the role of physical layer security. IEEE Commun. Stand. Mag. 6(1), 102–108 (2022). https://doi.org/10.1109/MCOMSTD.0001.2000082

    Article  Google Scholar 

  24. McCloghrie, K., Mogul, J., Kent, C.A., Partridge, C.: IP MTU discovery options. RFC 1063 (1988). https://doi.org/10.17487/RFC1063

  25. Braden, R.T.: Requirements for internet hosts - communication layers. RFC 1122 (1989). https://doi.org/10.17487/RFC1122

  26. Internet Protocol, RFC 791 (1981). https://doi.org/10.17487/RFC0791

  27. Rescorla, E., Dierks, T.: The transport layer security (TLS) protocol version 1.2, RFC 5246 (2008). https://doi.org/10.17487/RFC5246

  28. Thomson, M.: Record size limit extension for TLS, RFC 8449 (2018)

    Google Scholar 

  29. Eddy, W.: Transmission Control Protocol (TCP), RFC 9293 (2022). https://doi.org/10.17487/RFC9293

  30. Navarro-Ortiz, J., Romero-Diaz, P., Sendra, S., Ameigeiras, P., Ramos-Munoz, J.-J., Lopez-Soler, J.M.: A survey on 5G usage scenarios and traffic models. IEEE Commun. Surv. Tutorials 22(2), 905–929 (2020). https://doi.org/10.1109/COMST.2020.2971781

    Article  Google Scholar 

  31. Claeys, M., Bouten, N., De Vleeschauwer, D., Van Leekwijck, W., Latre, S., De Turck, F.: Cooperative announcement-based caching for video-on-demand streaming. IEEE Trans. Netw. Serv. Manage. 13(2), 308–321 (2016). https://doi.org/10.1109/TNSM.2016.2546459

    Article  Google Scholar 

Download references

Acknowledgment

The research leading to the published results was supported under the NATO SPS G894 project “Quantum Cybersecurity in 5G Networks (QUANTUM5)” and in part by the Ministry of the Interior of the Czech Republic within the project Network Cybersecurity in Post-Quantum Era under Grant VJ01010008; in part by the Ministry of Science, Higher Education and Youth of Canton Sarajevo, Bosnia and Herzegovina, under the project DQKDNM 2023; in part by Federal Ministry of Education and Science, Bosnia and Herzegovina, under Grant 05-35-2140-1/22; in part by the Ministry of Science, Higher Education and Youth of Canton Sarajevo, Bosnia and Herzegovina, under Grant 27-02-35-35137-30/22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Tankovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tankovic, A., Burdiak, P., Dervisevic, E., Voznak, M., Mehic, M., Kaljic, E. (2024). Performance Analysis of ETSI GS QKD 014 Protocol in 5G/6G Networks. In: Arai, K. (eds) Advances in Information and Communication. FICC 2024. Lecture Notes in Networks and Systems, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-031-53963-3_21

Download citation

Publish with us

Policies and ethics