Skip to main content

Prediction Error-Based Model Predictive Control for Resource Allocation of 5G Ultra-reliable Low-Latency Communication

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 919))

Included in the following conference series:

  • 140 Accesses

Abstract

5G ultra-reliable low-latency communication (uRLLC) requires extremely low latency and high reliability to serve safety-critical user ends (UEs) and applications. To fulfill those requirements, many uRLLC-related tasks are simplified for Quality of Service (QoS) analysis. Commonly Poisson or Bernoulli distributions are assumed for the incoming traffic. However, both distributions can only roughly present the characteristics of most communication traffic. On the other hand, the analysis of QoS according to predictions of traffic also requires further research. In this work, we consider the existence of a predictor for the incoming traffic and take the cumulative density function (CDF) of prediction errors into uRLLC’s QoS discussions. Furthermore, we consider a typical uRLLC resource allocation task and apply model predictive control (MPC) by converting the QoS into constraints of an optimization problem. The simulations shows that MPC can provide good performance with the prediction module, enhancing a robust operation and mitigating the stochastic effects of environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoshizawa, T., Baskaran, S.B.M., Kunz, A.: Overview of 5G URLLC system and security aspects in 3GPP. In: IEEE Conference on Standards for Communications and Networking (CSCN) 2019, pp. 1–5 (2019). https://doi.org/10.1109/CSCN.2019.8931376

  2. Cortés, J.A., Idiago, J.M.: 5G mobile communication systems: fundamentals, challenges, and key technologies. In: Kabalci, E., Kabalci, Y. (eds.) Smart Grids and Their Communication Systems, pp. 329–359. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1768-2_10

    Chapter  Google Scholar 

  3. Magni, L., Raimondo, D.M., Allgöwer, F.: Nonlinear Model Predictive Control: Towards New Challenging Applications. Lecture Notes in Control and Information Sciences, Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01094-1

    Book  Google Scholar 

  4. Grüne, L., Pannek, J.: Nonlinear Model Predictive Control: Theory and Algorithms. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46024-6

    Book  Google Scholar 

  5. Sun, C., She, C., Yang, C., Quek, T.Q.S., Li, Y., Vucetic, B.: Optimizing resource allocation in the short blocklength regime for ultra-reliable and low-latency communications. IEEE Trans. Wireless Commun. 18(1), 402–415 (2019). https://doi.org/10.1109/TWC.2018.2880907

    Article  Google Scholar 

  6. Nasir, A.A., Tuan, H.D., Nguyen, H.H., Debbah, M., Poor, H.V.: Resource allocation and beamforming design in the short blocklength regime for URLLC. IEEE Trans. Wireless Commun. 20(2), 1321–1335 (2021). https://doi.org/10.1109/TWC.2020.3032729

    Article  Google Scholar 

  7. Khorov, E., Krasilov, A., Malyshev, A.: Radio resource and traffic management for ultra-reliable low latency communications. In: IEEE Wireless Communications and Networking Conference (WCNC) 2018, pp. 1–6 (2018). https://doi.org/10.1109/WCNC.2018.8377279

  8. Fang, C.-H., Feng, K.-T., Yang, L.-L.: Resource allocation for URLLC service in in-band full-duplex-based V2I networks. IEEE Trans. Commun. 70(5), 3266–3281 (2022). https://doi.org/10.1109/TCOMM.2022.3161676

    Article  Google Scholar 

  9. Chang, B., Zhang, L., Li, L., Zhao, G., Chen, Z.: Optimizing resource allocation in URLLC for real-time wireless control systems. IEEE Trans. Veh. Technol. 68(9), 8916–8927 (2019). https://doi.org/10.1109/TVT.2019.2930153

    Article  Google Scholar 

  10. Ghanem, W.R., Jamali, V., Sun, Y., Schober, R.: Resource allocation for multi-user downlink MISO OFDMA-URLLC systems. IEEE Trans. Commun. 68(11), 7184–7200 (2020). https://doi.org/10.1109/TCOMM.2020.3017757

    Article  Google Scholar 

  11. Zhang, W., Derakhshani, M., Zheng, G., Chen, C.S., Lambotharan, S.: Bayesian optimization of queuing-based multi-channel URLLC scheduling. IEEE Trans. Wirel. Commun. (2022). https://doi.org/10.1109/TWC.2022.3206421

  12. Guo, C., Liang, L., Li, G.Y.: Resource allocation for vehicular communications with low latency and high reliability. IEEE Trans. Wireless Commun. 18(8), 3887–3902 (2019). https://doi.org/10.1109/TWC.2019.2919280

    Article  Google Scholar 

  13. Pandey, S.R., Alsenwi, M., Tun, Y.K., Hong, C.S.: A downlink resource scheduling strategy for URLLC traffic. In: IEEE International Conference on Big Data and Smart Computing (BigComp) 2019, pp. 1–6 (2019). https://doi.org/10.1109/BIGCOMP.2019.8679266

  14. Oladejo, S.O., Falowo, O.E.: Latency-aware dynamic resource allocation scheme for 5G heterogeneous network: a network slicing-multitenancy scenario. In: 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 1–7 (2019). https://doi.org/10.1109/WiMOB.2019.8923397

  15. Guo, C., Liang, L., Li, G.Y.: Resource allocation for low-latency vehicular communications: an effective capacity perspective. IEEE J. Sel. Areas Commun. 37(4), 905–917 (2019). https://doi.org/10.1109/JSAC.2019.2898743

    Article  Google Scholar 

  16. Ben Khalifa, N., Angilella, V., Assaad, M., Debbah, M.: Low-complexity channel allocation scheme for URLLC Traffic. IEEE Trans. Commun. 69(1), 194–206 (2021). https://doi.org/10.1109/TCOMM.2020.3022008

    Article  Google Scholar 

  17. Kasgari, A.T.Z., Saad, W., Mozaffari, M., Poor, H.V.: Experienced deep reinforcement learning with generative adversarial networks (GANs) for model-free ultra reliable low latency communication. IEEE Trans. Commun. 69(2), 884–899 (2021). https://doi.org/10.1109/TCOMM.2020.3031930

    Article  Google Scholar 

  18. Cheng, J., Shen, C., Xia, S.: Robust URLLC packet scheduling of OFDM systems. In: IEEE Wireless Communications and Networking Conference (WCNC) 2020, pp. 1–6 (2020). https://doi.org/10.1109/WCNC45663.2020.9120794

  19. Devassy, R., Durisi, G., Ferrante, G.C., Simeone, O., Uysal, E.: Reliable transmission of short packets through queues and noisy channels under latency and peak-age violation guarantees. IEEE J. Sel. Areas Commun. 37(4), 721–734 (2019). https://doi.org/10.1109/JSAC.2019.2898760

    Article  Google Scholar 

  20. Girgis, A.M., Park, J., Bennis, M., Debbah, M.: Predictive control and communication co-design via two-way gaussian process regression and AoI-aware scheduling. IEEE Trans. Commun. 69(10), 7077–7093 (2021). https://doi.org/10.1109/TCOMM.2021.3099156

    Article  Google Scholar 

  21. She, C., Yang, C., Quek, T.Q.S.: Cross-layer optimization for ultra-reliable and low-latency radio access networks. IEEE Trans. Wireless Commun. 17(1), 127–141 (2018). https://doi.org/10.1109/TWC.2017.2762684

    Article  Google Scholar 

  22. Polyanskiy, Y., Poor, H.V., Verdu, S.: Channel coding rate in the finite blocklength regime. IEEE Trans. Inf. Theory 56(5), 2307–2359 (2010). https://doi.org/10.1109/TIT.2010.2043769

    Article  MathSciNet  Google Scholar 

  23. López, O.L.A., Alves, H., Souza, R.D., Latva-Aho, M.: Finite blocklength error probability distribution for designing ultra reliable low latency systems. IEEE Access 8, 107353–107363 (2020). https://doi.org/10.1109/ACCESS.2020.3001135

    Article  Google Scholar 

  24. Ren, H., Wang, K., Pan, C.: Intelligent reflecting surface-aided URLLC in a factory automation scenario. IEEE Trans. Commun. 70(1), 707–723 (2022). https://doi.org/10.1109/TCOMM.2021.3125057

    Article  Google Scholar 

  25. Hou, Z., She, C., Li, Y., Zhuo, L., Vucetic, B.: Prediction and communication co-design for ultra-reliable and low-latency communications. IEEE Trans. Wireless Commun. 19(2), 1196–1209 (2020). https://doi.org/10.1109/TWC.2019.2951660

    Article  Google Scholar 

  26. Vielma, J.P.: Mixed integer linear programming formulation techniques. SIAM Rev. 57(1), 3–57 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Mendes, P.R.d.C., Wirsen, A., Görges, D. (2024). Prediction Error-Based Model Predictive Control for Resource Allocation of 5G Ultra-reliable Low-Latency Communication. In: Arai, K. (eds) Advances in Information and Communication. FICC 2024. Lecture Notes in Networks and Systems, vol 919. Springer, Cham. https://doi.org/10.1007/978-3-031-53960-2_19

Download citation

Publish with us

Policies and ethics