Skip to main content

Automatic Detection and Spline-Based Pixel-Length Estimation of Fishes from Images

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 919))

Included in the following conference series:

Abstract

Sustainable aqua farming is gaining momentum as the need for ecological preservation, at present, is being felt more intensely. For this, it is important to understand the distribution of body length and mass of the farmed fishes. It helps to make informed decisions that reduces over fishing through effective growth monitoring of the fish schools. In this paper, we present a vision based approach for automatic detection, length estimation in the pixel domain and body mass determination of fishes in an aqua farming environment. We evaluate Mask-RCNN, YOLO algorithms for detecting fishes with inexpensive single camera set up placed above the water tank. We obtain a mean average precision (mAP50) score of 0.893 with the YOLO models for fish detection. Subsequently, we use B-splines for estimating the length of fish in the pixel domain followed by mass estimation by fitting the Length-Weight relationship using regression.

This research was funded in part by the German Federal Ministry of Education and Research (BMBF) under the project FishAI (Grant number 031B1252B).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biswas, R., Mutz, M., Khonsari, R., Werth, D.: A study on artificial intelligence techniques for automatic fish-size estimation. In: Arai, K. (ed.) SAI 2023. LNNS, vol. 711, pp. 116–126. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37717-4_72

    Chapter  Google Scholar 

  2. Bradley, D., Merrifield, M., Miller, K.M., Lomonico, S., Wilson, J.R., Gleason, M.G.: Opportunities to improve fisheries management through innovative technology and advanced data systems. Fish Fisheries 20(3), 564–583 (2019)

    Google Scholar 

  3. Chaurasia, A., Culurciello, E.: Linknet: exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2017)

    Google Scholar 

  4. Garcia, R., et al.: Automatic segmentation of fish using deep learning with application to fish size measurement. ICES J. Marine Sci. 77(4), 1354–1366 (2019)

    Google Scholar 

  5. Garcia-d’Urso, N., et al.: The deepfish computer vision dataset for fish instance segmentation, classification, and size estimation. Sci. Data 9(1), 287 (2022)

    Google Scholar 

  6. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2015)

    Article  Google Scholar 

  7. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  8. Jocher, G., et al.:. ultralytics/yolov5: v6.2 - YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai integrations, August 2022

    Google Scholar 

  9. Konovalov, D.A., Saleh, A., Efremova, D.B., Domingos, J.A., Jerry, D.R.: Automatic weight estimation of harvested fish from images. In: 2019 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–7. IEEE (2019)

    Google Scholar 

  10. Le Cren, E.D.: The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (perca fluviatilis). J. Animal Ecol. 201–219 (1951)

    Google Scholar 

  11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  12. Monkman, G., Hyder, K., Kaiserc, M., Vidal, F.: Using machine vision to estimate fish length from images using regional convolutional neural networks. Methods Ecol. Evol. 10, 08 (2019)

    Article  Google Scholar 

  13. Monkman, G.G., Hyder, K., Kaiser, M.J., Vidal, F.P.: Accurate estimation of fish length in single camera photogrammetry with a fiducial marker. ICES J. Marine Sci. 77(6), 2245–2254 (2019)

    Google Scholar 

  14. O’Neill, E.A., Stejskal, V., Clifford, E., Rowan, N.J.: Novel use of peatlands as future locations for the sustainable intensification of freshwater aquaculture production - a case study from the republic of Ireland. Sci. Total Environ. 706, 136044 (2020)

    Article  Google Scholar 

  15. Palmer, M., Ellacuría, A.Á., Moltó, V., Catalán, I.A.: Automatic, operational, high-resolution monitoring of fish length and catch numbers from landings using deep learning. Fisher. Res. 246, 106166 (2022)

    Google Scholar 

  16. Rauf, H.T., Lali, M.I.U., Zahoor, S., Shah, S.Z.H., Rehman, A.U., Bukhari, S.A.C.: Visual features based automated identification of fish species using deep convolutional neural networks. Comput. Electron. Agric. 167, 105075 (2019)

    Google Scholar 

  17. Rosen, S., Jörgensen, T., Hammersland-White, D., Holst, J.C.: Deepvision: a stereo camera system provides highly accurate counts and lengths of fish passing inside a trawl. Can. J. Fisher. Aquatic Sci. 70(10), 1456–1467 (2013)

    Google Scholar 

  18. Saleh, A., Laradji, I.H., Konovalov, D.A., Bradley, M., Vazquez, D., Sheaves M.: A realistic fish-habitat dataset to evaluate algorithms for underwater visual analysis. Sci. Rep. 10(1), 14671 (2020)

    Google Scholar 

  19. Siddiqui, S.A., et al.: Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES J. Marine Sci. 75(1), 374–389 (2018)

    Google Scholar 

  20. Tseng, C.-H., Hsieh, C.-L., Kuo, Y.-F.: Automatic measurement of the body length of harvested fish using convolutional neural networks. Biosyst. Eng. 189, 36–47 (2020)

    Article  Google Scholar 

  21. Vo, T.T.E., Ko, H., Huh, J.-H., Kim, Y.: Overview of smart aquaculture system: focusing on applications of machine learning and computer vision. Electronics 10(22), 2882 (2021)

    Article  Google Scholar 

  22. Yang, L., et al.: Computer vision models in intelligent aquaculture with emphasis on fish detection and behavior analysis: a review. Arch. Comput. Methods Eng. 28, 2785–2816 (2021)

    Article  MathSciNet  Google Scholar 

  23. Yang, Y., Xue, B., Jesson, L., Wylie, M., Zhang, M., Wellenreuther, M.: Deep convolutional neural networks for fish weight prediction from images. In: 2021 36th International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6. IEEE (2021)

    Google Scholar 

  24. Zhou, C., et al.: An adaptive image enhancement method for a recirculating aquaculture system. Sci. Rep. 7(1), 6243 (2017)

    Article  Google Scholar 

  25. Zhou, C., et al.: Near-infrared imaging to quantify the feeding behavior of fish in aquaculture. Comput. Electron. Agric. 135, 233–241 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarshi Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biswas, R., Mutz, M., Khonsari, R., Werth, D. (2024). Automatic Detection and Spline-Based Pixel-Length Estimation of Fishes from Images. In: Arai, K. (eds) Advances in Information and Communication. FICC 2024. Lecture Notes in Networks and Systems, vol 919. Springer, Cham. https://doi.org/10.1007/978-3-031-53960-2_10

Download citation

Publish with us

Policies and ethics