Skip to main content

A Reconfigurable Load-Modulated Balanced 9-GHz Power Amplifier Design for Radar Applications

  • Conference paper
  • First Online:
The Second International Adaptive and Sustainable Science, Engineering and Technology Conference (ASSET 2023)

Abstract

In the last two decades, radar has been increasingly utilized in new vertical industries and commercial and government sectors as object detectors due to advanced process technologies and efficient designs. Power amplifiers (PAs) implemented in these radar systems play a crucial role in the system’s function, capabilities, and limitations. Linearity, gain, and efficiency are important PA performance metrics at higher output power levels. This paper proposes the load-modulated balanced amplifier (LMBA) design as an efficient PA architecture to meet stringent radiation-prone space and terrestrial use case requirements. A gate GaN-on-SiC WIN transistor was utilized to design a 9-GHz LMBA PA. It was biased at a gate voltage of −2.6 V and drain voltage of 28 V. The PA achieved an output power of >33 dBm and a gain output of >9 dB at a PAE of >55%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gigorro, E., Pascual, E., Martínez, J.J.S., Heras, M.L.G., Fernandez, B.V., Márquez, B.A., Grajal, J.: Design and characterization of a 6–18 GHz GaN on SiC high-power amplifier MMIC for electronic warfare. Int. J. Microw. Wirel. Technol. 11(7), 625–634 (2019)

    Google Scholar 

  2. Ekpo, S.C.: Parametric system engineering analysis of capability-based small satellite missions. IEEE Syst. J. 13(3), 3546–3555 (2019). https://doi.org/10.1109/JSYST.2019.2919526

    Article  Google Scholar 

  3. Ekpo, S.C.: Thermal subsystem operational times analysis for ubiquitous small satellites relay in LEO. Int. Rev. Aerosp. Eng. J. 11(2), 48–57 (2018). https://doi.org/10.15866/irease.v11i2.13663

    Article  Google Scholar 

  4. Ekpo, S., George, D.: A system engineering analysis of highly adaptive small satellites. IEEE Syst. J. 7(4), 642–648 (2013). https://doi.org/10.1109/JSYST.2012.2198138

    Article  Google Scholar 

  5. Chen, R., Li, R., Zhou, S., Chen, S., Huang, J., Wang, Z.: An X-band 40 W power amplifier GaN MMIC design by using equivalent output impedance model. Electronics. 8(99), 2–8 (2019)

    Google Scholar 

  6. Ekpo, S.C., Adebisi, B., George, D., Kharel, R., Uko, M.: A system-level multicriteria modelling of payload operational times for communication satellite missions in LEO. Recent Prog. Space Technol. 4(1), 67–77 (2014). https://doi.org/10.2174/2210687104666140620221119

    Article  Google Scholar 

  7. Shepphard, D.J., Powell, J., Cripps, S.C.: An efficient broadband reconfigurable power amplifier 92 using active load modulation. IEEE Microw. Wirel. Compon. Lett. 26(6), 443–445 (2016)

    Article  Google Scholar 

  8. Ekpo, S., George, D.: Reconfigurable cooperative intelligent control design for space missions. Recent Pat. Space Technol. 2(1), 2–11 (2012). https://doi.org/10.2174/1877611611202010002

    Article  Google Scholar 

  9. Ekpo, S., George, D.: Impact of noise figure on a satellite link performance. IEEE Commun. Lett. 15(9), 977–979 (2011). https://doi.org/10.1109/LCOMM.2011.072011.111073

    Article  Google Scholar 

  10. Ekpo, S., George, D.: 4–8 GHz LNA design for an adaptive small Satellite Transponder using InGaAs PHEMT technology. In: Proc. 11th IEEE Wireless & Microwave Conference, pp. 1–4, Melbourne, FL, USA (2010). https://doi.org/10.1109/WAMICON.2010.5461877

  11. Powell, J.R., Shepphard, D.J., Quaglia, R., Cripps, S.C.: A power reconfigurable high-efficiency X-band power amplifier MMIC using the load modulated balanced amplifier technique. IEEE Microw. Wirel. Compon. Lett. 28(6), 527–529 (2018)

    Article  Google Scholar 

  12. Quaglia, R., Cripps, S.: A load modulated balanced amplifier for telecom applications. Trans. Microw. Theory Tech. 66(3), 1328–1337 (2018)

    Article  Google Scholar 

  13. Sowande, O., Idachaba, F., Ekpo, S., Faruk, N., Uko, M., Ogunmodimu, O.: Sub- 6 GHz 5G spectrum for satellite-cellular convergence broadband internet access in Nigeria. Int. Rev. Aerosp. Eng. J. 15(2), 85–96 (2022). https://doi.org/10.1109/NIGERCON54645.2022.9803144

    Article  Google Scholar 

  14. Zafar, M., Ekpo, S., George, J., Sheedy, P., Uko, M., Gibson, A.: Hybrid power divider and combiner for passive RFID tag wireless energy harvesting. IEEE Access J. 10, 502–515 (2022). https://doi.org/10.1109/ACCESS.2021.3138070

    Article  Google Scholar 

  15. Uko, M., Ekpo, S.: A 23–28 GHz pHEMT MMIC low-noise amplifier for satellite-cellular convergence applications. Int. Rev. Aerosp. Eng. J. 14(5), 1–10 (2021). https://doi.org/10.15866/irease.v14i5.20361

    Article  Google Scholar 

  16. Uko, M., Ekpo, S.: 8–12 GHz pHEMT MMIC low-noise amplifier for 5G and fiber-integrated satellite applications. Int. Rev. Aerosp. Eng. J. 13(3), 99–107 (2020). https://doi.org/10.15866/irease.v13i3.17998

    Article  Google Scholar 

  17. Ekpo, S., Adebisi, B., Wells, A.: Regulated-element Frost beamformer for vehicular multimedia sound enhancement and noise reduction applications. IEEE Access J. 5, 27254–27262 (2017). https://doi.org/10.1109/ACCESS.2017.2775707

    Article  Google Scholar 

  18. Uko, M.C., Ukommi, U., Ekpo, S.C., Kharel, R.: Effect of shadowing and multipath fading on the area spectral efficiency of a macro-femto heterogeneous network for cell-edge users. Appl. Comput. Electromagn. Soc. J. 35, 1043–1046 (2016)

    Google Scholar 

  19. Ekpo, S., George, D.: A power budget model for highly adaptive small satellites. Recent Pat. Space Technol. 3(2), 118–127 (2013). https://doi.org/10.2174/1877611611303020003

    Article  Google Scholar 

  20. Ekpo, S., George, D.: A deterministic multifunctional architecture design for highly adaptive small satellites. Int. J. Satell. Commun. Policy Manage. 1(2/3), 174–194 (2012). https://doi.org/10.1504/IJSCPM.2012.049543

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Christopher Skippings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skippings, J.C., Ekpo, S.C., Elias, F., Gibson, A. (2024). A Reconfigurable Load-Modulated Balanced 9-GHz Power Amplifier Design for Radar Applications. In: Ekpo, S.C. (eds) The Second International Adaptive and Sustainable Science, Engineering and Technology Conference. ASSET 2023. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-53935-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53935-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53934-3

  • Online ISBN: 978-3-031-53935-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics