Skip to main content

Gas Temperatures

  • Chapter
  • First Online:
Tunnel Fire Dynamics

Abstract

Gas temperature is of great importance for the assessment of heat exposure to tunnel users and tunnel structures, estimation of fire detection time and possibility of fire spread and to design ventilation systems. In this chapter, the theory of fire plumes in ventilated flows is presented with a focus on the maximum ceiling gas temperature and its position in tunnel fires. The maximum ceiling excess gas temperature can be classified into two regions, depending on the ventilation velocity. Each can be divided into two subregions. The first subregion exhibits a linear increase which transits into a constant period, depending on the fire size, ventilation and effective tunnel height. The position of the maximum ceiling gas temperature is directly related to a dimensionless ventilation velocity. A theoretical analysis of the upper smoke layer is presented, and correlations for the distribution of ceiling gas temperature along the tunnel are given to support this analysis. Finally, a one-dimensional model of average gas temperatures in tunnel fires with longitudinal ventilation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carvel RO, Marlair G (2005) A history of fire incidents in tunnels. In: Beard AN, Carvel RO (eds) The handbook of tunnel fire safety. Thomas Telford Publishing, London, pp 3–41

    Google Scholar 

  2. International Organization for Standardization (1999) Fire-resistance tests – elements of building construction – part 1: general requirements, 1st edn. International Organization for Standardization

    Google Scholar 

  3. European Committee for Standardization (1999) Fire resistance tests – part 2: alternative and additional procedures, 1st edn. European Committee for Standardization

    Google Scholar 

  4. Instituut TNO voor Bouwmaterialen en Bouwconstructies (1979) Beproeving van het gedrag bij verhitting van twee isolatiematerialen ter bescherming van tunnels bij brand. Instituut TNO voor Bouwmaterialen en Bouwconstructies, Delft

    Google Scholar 

  5. Richtlinien für Ausstattung und Betrieb von Tunneln (RABT) (1985) Ausgabe 1985. Forschungsgesellschaft für Straßen- und Verkehrswesen

    Google Scholar 

  6. Abschlussbericht zum BMVBS/BASt Forschungsvorhaben 15.0391/2003/ERB: Brandschutzverhalten von selbstverdich-tendem Beton (SVB) im Straßentunnelbau (2005). MFPA Leipzig, März

    Google Scholar 

  7. Hoult DP, Fay JA, Forney LJ (1969) A theory of plume rise compared with field observations. J Air Pollut Control Assoc 19:585–590

    Article  Google Scholar 

  8. Hoult DP, Weil JC (1972) Turbulent plume in a laminar cross flow. Atmos Environ 6(8):513–530

    Article  Google Scholar 

  9. Kurioka H, Oka Y, Satoh H, Sugawa O (2003) Fire properties in near field of square fire source with longitudinal ventilation in tunnels. Fire Saf J 38:319–340

    Article  Google Scholar 

  10. Li YZ, Lei B, Ingason H (2011) The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires. Fire Saf J 46(4):204–210

    Article  Google Scholar 

  11. Li YZ, Ingason H (2012) The maximum ceiling gas temperature in a large tunnel fire. Fire Saf J 48:38–48

    Article  Google Scholar 

  12. Li YZ, Ingason H (2010) Maximum temperature beneath ceiling in a tunnel fire, SP report 2010:51. SP Technical Research Institute of Sweden

    Google Scholar 

  13. Karlsson B, Quintier JG (2000) Enclosure fire dynamics. CRC Press, New York

    Google Scholar 

  14. Heskestad G (2008) Fire plumes, flame height, and air entrainment. In: DiNenno PJ, Drysdale D, Beyler CL et al (eds) The SFPE handbook of fire protection engineering, 4th edn. National Fire Protection Association, Quincy, pp 2-1–2-20

    Google Scholar 

  15. Zukoski EE (1985) Smoke movement and mixing in two-layer fire models. In: The 8th UJNR joint panel meeting on fire research and safety, Tsukuba, 13–17 June 1985

    Google Scholar 

  16. Quintiere JG, Rinkinen WJ, Jones WW (1981) The effect of room openings on fire plume entrainment. Combust Sci Technol 26:193–201

    Article  Google Scholar 

  17. AGA (1974) LNG safety program: interim report on phase II work. American Gas Association, Arlington

    Google Scholar 

  18. Raj PPK, Moussa AN, Aravamudau K (1981) Experiments involving pool and vapor fires from spills of liquidified natural gas on water. Prepared for U.S. Department of Transportation, U.S. Coast Guard, Report No. CG-D-55-79

    Google Scholar 

  19. Tang F, Li L, Chen W, Tao C, Zhan Z (2017) Studies on ceiling maximum thermal smoke temperature and longitudinal decay in a tunnel fire with different transverse gas burner locations. Appl Therm Eng 110:1674–1681

    Article  Google Scholar 

  20. Gao Y, Zhu G, Gu S, Tao H, Zhao Y (2018) Experimental and numerical studies on ceiling maximum smoke temperature and longitudinal decay in a horseshoe shaped tunnel fire. Case Stud Thermal Eng 12:134–142

    Article  Google Scholar 

  21. Lu K, Xia K, Shi C, Yang M, Wang J, Ding Y (2021) Investigation on the tunnel curvature effect upon the ceiling temperature of tunnel fires: a numerical simulation. Fire Technol 57:2839–2858

    Article  Google Scholar 

  22. Pan R, Zhu G, Liang Z, Zhang G, Liu H, Zhou X (2020) Experimental study on the fire shape and maximum temperature beneath ceiling centerline in utility tunnel under the effect of curved sidewall. Tunn Undergr Space Technol 99:103304

    Google Scholar 

  23. Tang F, He Q, Chen L, Li P (2019) Experimental study on maximum smoke temperature beneath the ceiling induced by carriage fire in a tunnel with ceiling smoke extraction. Sustain Cities Soc 44:40–45

    Article  Google Scholar 

  24. Ji J, Bi Y, Venkatasubbaiah K, Li K (2016) Influence of aspect ratio of tunnel on smoke temperature distribution under ceiling in near field of fire source. Appl Therm Eng 106:1094–1102

    Article  Google Scholar 

  25. Zhang T, Wang G, Hu H, Huang Y, Zhu K, Wu K (2021) Study on temperature decay characteristics of fire smoke backflow layer in tunnels with wide-shallow cross-section. Tunn Undergr Space Technol 112:103874

    Google Scholar 

  26. Li J, Li Y, Li J, Zhong H, Zhao J, Xu D (2023) Experimental analysis of the effect of the ramp slopes on the maximum exceedance temperature in a branched tunnel fire. Tunn Undergr Space Technol 131:104829

    Article  Google Scholar 

  27. Jiao W, Chen C, Lei P, Zhang Y (2024) Experimental study on the effects of branch tunnel ventilation on the smoke movement and temperature characteristics in bifurcated tunnel fires. Tunn Undergr Space Technol 144:105529

    Article  Google Scholar 

  28. Lu X, Weng M, Liu F, Wang F, Han J, Chipok Cheung S (2022) Effect of bifurcation angle and fire location on smoke temperature profile in longitudinal ventilated bifurcated tunnel fires. Tunn Undergr Space Technol 127:104610

    Article  Google Scholar 

  29. Lu X, Weng M, Liu F, Wang F, Han J, Cheung SC (2022) Study on smoke temperature profile in bifurcated tunnel fires with various bifurcation angles under natural ventilation. J Wind Eng Ind Aerodyn 225:105001

    Article  Google Scholar 

  30. Tang F, Cao ZL, Chen Q, Meng N, Wang Q, Fan CG (2017) Effect of blockage-heat source distance on maximum temperature of buoyancy-induced smoke flow beneath ceiling in a longitudinal ventilated tunnel. Int J Heat Mass Transf 109:683–688

    Article  Google Scholar 

  31. Chen C, Zhang Y, Lei P, Jiao W (2020) A study for predicting the maximum gas temperature beneath ceiling in sealing tactics against tunnel fire. Tunn Undergr Space Technol 98:103275

    Article  Google Scholar 

  32. Li Q, Kang J, Wang Y, Feng Y (2023) Experimental study on the effect of sealing behavior on smoke temperature characteristics in tunnel fires. Thermal Sci Eng Progress 40:101784

    Article  Google Scholar 

  33. Yao Y, He K, Peng M, Shi L, Cheng X, Zhang H (2018) Maximum gas temperature rise beneath the ceiling in a portals-sealed tunnel fire. Tunn Undergr Space Technol 80:10–15

    Article  Google Scholar 

  34. Zhou Y, Chen F, Geng Z, Bu R, Gong W, Fan C, Yi L (2021) Experimental study on the characteristics of temperature distribution of two pool fires with different transverse locations in a naturally ventilated tunnel. Tunn Undergr Space Technol 116:104095

    Article  Google Scholar 

  35. He K, Li YZ, Ingason H, Shi L, Cheng X (2024) Experimental study on the maximum ceiling gas temperature driven by double fires in a tunnel with natural ventilation. Tunn Undergr Space Technol 144:105550

    Article  Google Scholar 

  36. Guo C, Zhang T, Guo Q, Yu T, Fang Z, Yan Z (2023) Full-scale experimental study on fire characteristics induced by double fire sources in a two-lane road tunnel. Tunn Undergr Space Technol 131:104768

    Article  Google Scholar 

  37. Gong L, Jiang L, Li S, Shen N, Zhang Y, Sun J (2016) Theoretical and experimental study on longitudinal smoke temperature distribution in tunnel fires. Int J Therm Sci 102:319–328

    Article  Google Scholar 

  38. Li YZ, Ingason H (2016) New models for calculating maximum gas temperatures in large tunnel fires, SP Report 2016:95. SP Technical Research Institute of Sweden.

    Google Scholar 

  39. Li YZ, Ingason H (2018) Model scale tunnel fire tests on maximum ceiling gas temperature for structural protection, RISE Rapport 2018:58. RISE Research Institutes of Sweden.

    Google Scholar 

  40. McCaffrey BJ (1979) Purely buoyant diffusion flames: some experimental results. NBS IR 79-1910. National Bureau of Standards, Washington, DC

    Google Scholar 

  41. Ingason H, Lönnermark A, Li YZ (2011) Runehamar tunnel fire tests, SP Report 2011:55. SP Technical Research Institute.

    Google Scholar 

  42. Memorial Tunnel Fire Ventilation Test Program – Test Report (1995) Massachusetts Highway Department and Federal Highway Administration

    Google Scholar 

  43. Li YZ, Ingason H (2014) Position of maximum ceiling temperature in a tunnel fire. Fire Technol 50:889–905

    Article  Google Scholar 

  44. Li YZ, Lei B, Ingason H (2010) Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Saf J 45:361–370

    Article  Google Scholar 

  45. Guo Q, Li YZ, Ingason H, Yan Z, Zhu H (2021) Theoretical studies on buoyancy-driven ceiling jets of tunnel fires with natural ventilation. Fire Saf J 119:103228

    Article  Google Scholar 

  46. Delichatsios MA (1981) The flow of fire gases under a beamed ceiling. Combust Flame 43:1–10

    Article  Google Scholar 

  47. Li YZ, Ingason H (2015) Fire-induced ceiling jet characteristics in tunnels under different ventilation conditions, SP report 2015:23. SP Technical Research Institute of Sweden, Borås

    Google Scholar 

  48. Ingason H, Li YZ (2010) Model scale tunnel fire tests with longitudinal ventilation. Fire Saf J 45:371–384

    Article  Google Scholar 

  49. Ingason H, Lönnermark A (2005) Heat release rates from heavy goods vehicle trailers in tunnels. Fire Saf J 40:646–668

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ingason, H., Li, Y.Z., Lönnermark, A. (2024). Gas Temperatures. In: Tunnel Fire Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-031-53923-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53923-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53922-0

  • Online ISBN: 978-3-031-53923-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics