Skip to main content

Combustion Products from Fires

  • Chapter
  • First Online:
Tunnel Fire Dynamics

Abstract

Knowledge of the different species produced during fires is of great importance for estimating the toxicity of the fire gases. In this chapter, the main combustion products from different types of fires are presented. This includes carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride (HCl), sulphur dioxide (SO2), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs), total amount of hydrocarbons (THC) and soot/smoke, but yields also for some other species are presented. Results from measurement during fire tests in vehicles and tunnels are summarized and discussed. The importance of the ventilation conditions (equivalence ratio) on the productions of different species is described, and relations for different yields and ratios are given and discussed. The effect of fire suppression on combustion products is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also Eq. 2.13.

  2. 2.

    See also Eq. 2.14.

  3. 3.

    See also Eq. 2.17.

References

  1. Simonson M, Tuovinen H, Emanuelsson V (2000) Formation of hydrogen cyanide in fires – a literature and experimental investigation. SP Swedish National Testing and Research Institute, Borås

    Google Scholar 

  2. Purser DA (2000) Toxic product yields and hazard assessment for fully enclosed design fires. Polym Int 49:1232–1255

    Article  Google Scholar 

  3. Ferrari LA, Arado MG, Giannuzzi L, Mastrantonio G, Guatelli MA (2001) Hydrogen cyanide and carbon monoxide in blood of convicted dead in a polyurethane combustion: a proposition for the data analysis. Forensic Sci Int 121:140–143

    Article  Google Scholar 

  4. Purser DA (2002) Toxicity assessment of combustion products. In: DiNenno PJ (ed) SFPE handbook of fire protection engineering, 3rd edn. National Fire Protection Association, Inc, Quincy, pp 2-83–82-171

    Google Scholar 

  5. Nelson GL (1998) Carbon monoxide and fire toxicity: a review and analysis of recent work. Fire Technol 34(1):39–58

    Article  Google Scholar 

  6. Gann RG (2004) Sublethal effects of fire smoke. Fire Technol 40:95–99

    Article  Google Scholar 

  7. Sader JD, Ou SS (1977) Correlation of the smoke tendency of materials. Fire Res 1(3)

    Google Scholar 

  8. Warnatz J, Maas U, Dibble RW (1996) Combustion – physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  9. Glassman I (1996) Combustion, 3rd edn. Academic

    Google Scholar 

  10. Atomic Weights of the Elements 1993 (1994) International union of pure and applied chemistry (IUPAC). Pure Appl Chem 66(12):2423–2444

    Article  Google Scholar 

  11. Trends in Atmospheric Carbon Dioxide (2014) Global greenhouse gas reference network. http://www.esrl.noaa.gov/gmd/ccgg/trends/index.html. Accessed 19 Jan 2014

  12. Weast RC (ed) (1977–78) Handbook of chemistry and physics, 58th edn. Chemical Rubber Company

    Google Scholar 

  13. Li YZ, Ingason H (2014) A new methodology of design fires for train carriages. In: ISTSS 6th international symposium on tunnel safety and security, Marseille

    Google Scholar 

  14. Huggett C (1980) Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater 4(2):61–65

    Article  Google Scholar 

  15. Lönnermark A, Stripple H, Blomqvist P (2006) Modellering av emissioner från bränder. SP Sveriges Provnings- och Forskningsinstitut, Borås

    Google Scholar 

  16. Persson B, Simonson M, Månsson M (1995) Utsläpp från bränder till atmosfären. SP Sveriges Provnings- och Forskningsinstitut, Borås. (in Swedish)

    Google Scholar 

  17. Tewardson A (2008) Generation of heat and gaseous, liquid, and solid products in fires. In: DiNenno PJ, Drysdale D, Beyler CL et al (eds) The SFPE handbook of fire protection engineering, 4th edn. National Fire Protection Association, Quincy, pp 3-109–103-194

    Google Scholar 

  18. ISO (2002) Reaction-to-fire tests – heat release, smoke production and mass loss rate – part 1: heat release rate (cone calorimeter method), 2nd edn. ISO

    Google Scholar 

  19. Hertzberg T, Blomqvist P, Dalene M, Skarping G (2003) Particles and isocyanates from fires. SP Swedish National Testing and Research Institute, Borås

    Google Scholar 

  20. Butler KM, Mulholland GW (2004) Generation and transport of smoke components. Fire Technol 40:149–176

    Article  Google Scholar 

  21. Blomqvist P, Persson B, Simonson M (2002) Utsläpp från bränder till miljön – Utsläpp av dioxin, PAH och VOC till luften. Räddningsverket (Swedish Rescue Services Agency), Karlstad, Sweden (in Swedish)

    Google Scholar 

  22. Persson B, Simonson M (1998) Fire emissions into the atmosphere. Fire Technol 34(3):266–279

    Article  Google Scholar 

  23. Hölemann H (1994) Environmental problems caused by fires and fire-figthing agents. In: Fire safety science – proceedings of the fourth international symposium, Ottawa, Canada, 13–17 June 1994. International Association for Fire Safety Science (IAFSS), pp 61–77

    Google Scholar 

  24. Ahrens M, Rohr KD (2003) Fire and the environment: issues and events. In: Proceedings of the fire risk and Hazard assessment research application symposium, Baltimore, Maryland, USA, 9–11 July 2003. The Fire Protection Research Foundation

    Google Scholar 

  25. Marlair G, Simonson M, Gann RG (2004) Environmental concerns of fires: facts, figures, questions and new challenges for the future. In: 10th International Fire Science & Engineering Conference (Interflam 2004), Edinburgh, Scotland, 5–7 July 2004. Interscience Communications, pp 325–337

    Google Scholar 

  26. Lönnermark A, Blomqvist P (2006) Emissions from an automobile fire. Chemosphere 62:1043–1056

    Article  Google Scholar 

  27. Fires in Transport Tunnels: Report on Full-Scale Tests, edited by Studiensgesellschaft Stahlanwendung e. V., Düsseldorf, Germany, 1995

    Google Scholar 

  28. Wichmann H, Lorenz W, Bahadir M (1995) Release of PCDD/F and PAH during vehicle fires in traffic tunnels. Chemosphere 31(2):2755–2766

    Article  Google Scholar 

  29. Ingason H (1994) Heat release rate measurements in tunnel fires. In: Ingason H (ed) International conference on fires in tunnels, Borås, Sweden, October 10–11, 1994. SP Swedish National Testing and Research Institute, pp 86–103

    Google Scholar 

  30. Reisman JI (1997) Air emissions from scrap Tire combustion. United States Environmental Protections Agency

    Google Scholar 

  31. Lemieux PM, DeMarini D (1992) Mutagenicity of emissions from the simulated open burning of scrap rubber tires. U.S. Environmental Protection Agency, Control Technology Center, office of Research and Development

    Google Scholar 

  32. Lemieux PM, Ryan JV (1993) Characterization of air pollutants emitted from a simulated scrap Tire fire. J Air Waste Manage Assoc 43:1106–1115

    Article  Google Scholar 

  33. Lemieux PM, Lutes CC, Santoianni DA (2004) Emissions of organic air toxics from open burning: a comprehensive review. Prog Energy Combust Sci 30:1–32

    Article  Google Scholar 

  34. Conesa JA, Martín-Gullón I, Font R, Jauhiainen J (2004) Complete study of the pyrolysis and Gsification of scrap tires in a pilot plant reactor. Environ Sci Technol 38:3189–3194

    Article  Google Scholar 

  35. Vianello C, Fabiano B, Palazzi E, Maschio G (2012) Experimental study on thermal and toxic hazards connected to fire scenarios. J Loss Prev Process Ind 25:718–729

    Article  Google Scholar 

  36. Ingason H, Lönnermark A, Li YZ (2011) Runehamar tunnel fire tests, SP report 2011:55. SP Technicial Research Institute

    Google Scholar 

  37. Ingason H, Lönnermark A (2005) Heat release rates from heavy goods vehicle trailers in tunnels. Fire Saf J 40:646–668

    Article  Google Scholar 

  38. Lönnermark A, Ingason H (2005) Gas temperatures in heavy goods vehicle fires in tunnels. Fire Saf J 40:506–527

    Article  Google Scholar 

  39. Lecocq A, Bertana M, Truchot B, (2012) Marlair G Comarison of the fire consequences of an electric vehicle and an internal combustion engine vehicle. In: Andersson P, Sundström B (eds) Second international conference on fires in vehicles, Chicago, USA, 27–28 September 2012. SP Technical Research Institute of Sweden, pp. 183-193

    Google Scholar 

  40. Larsson F, Andersson P, Blomqvist P, Lorén A, Mellander B-E (2014) Characteristics of lithium-ion batteries during fire tests. J Power Sources 271:414–420

    Article  Google Scholar 

  41. Willstrand O, Bisschop R, Blomqvist P, Temple A, Andersson J (2020) Toxic gases from fire in electric vehicles. RISE Research Institutes of Sweden

    Google Scholar 

  42. Larsson F, Andersson P, Blomqvist P, Mellander B-E (2017) Toxic fluoride gas emissions from lithium-ion battery fires. Sci Rep 7(10018):1–13

    Google Scholar 

  43. Ribière P, Grugeon S, Morcrette M, Boyanov S, Laruelle S, Marlair G (2012) Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ Sci 5:5271–5280

    Article  Google Scholar 

  44. Larsson F, Andersson P, Mellander B-E (2016) Lithium-ion battery aspects on fires in electrified vehicles on the basis of experimental abuse tests. Batteries 2(2):9

    Article  Google Scholar 

  45. Andersson P, Blomqvist P, Lorén A, Larsson F (2013) Investigation of fire emissions from Li-ion batteries. SP Technical Research Institute of Sweden

    Google Scholar 

  46. Hynynen J, Willstrand O, Blomqvist P, Andersson P (2023) Analysis of combustion gases from large-scale electric vehicle fire tests. Fire Saf J 139:103829

    Article  Google Scholar 

  47. Zhang Y, Wang H, Li W, Li C (2019) Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries. eTransportation 2:100031

    Article  Google Scholar 

  48. Li YZ (2019) Study of fire and explosion hazards of alternative fuel vehicles in tunnels. Fire Saf J 110:102871

    Article  Google Scholar 

  49. Puente E, Lázaro D, Alvear D (2016) Studyoftunnelpavementsbehaviourin firebyusingcoupledcone calorimeter – FTIR analysis. Fire Saf J 81:1–7

    Article  Google Scholar 

  50. Wang W, Shen A, Wang L, Liu H (2022) Measurements, emission characteristics, and control methods of fire effluents generated from tunnel asphalt pavement during fire: a review. Environ Sci Pollut Res 29:64267–64297

    Article  Google Scholar 

  51. Hull TR, Stec AA (2010) Introduction to fire toxicity. In: Stec A, Hull R (eds) Fire toxicity. CRC

    Google Scholar 

  52. Mauring T (2003) Personal communication, Åndalsnes, Norway

    Google Scholar 

  53. Nilsen AR, Lindvik PA, Log T (2001) Full-scale fire testing in Sub Sea public road tunnels. In: Interflam 2001, Edinburgh, Scotland, 17–19 September 2001. Interscience Communications, pp 913–924

    Google Scholar 

  54. Ingason H, Bergqvist A, Lönnermark A, Frantzich H, Hasselrot K (2005) Räddningsinsatser i vägtunnlar. Räddningsverket

    Google Scholar 

  55. Pitts WM (1994) The global equivalence ratio concept and the prediction of carbon monoxide formation in enclosure fires. National Institute of Standards and Technology, Gaithersburg

    Book  Google Scholar 

  56. Beyler CL (1986) Major species production by diffusion flames in a two-layer compartment fire environment. Fire Saf J 10:47–56

    Article  Google Scholar 

  57. Gottuk DT (1992) Carbon monoxide production in compartment fires. J Fire Prot Eng 4(4):133–150

    Article  Google Scholar 

  58. Gottuk DT, Lattimer BY (2002) Effect of combustion conditions on species production. In: DiNenno PJ (ed) SFPE handbook of fire protection engineering, 3rd edn. National Fire Protection Association, Inc, Quincy, pp 2-54–52-82

    Google Scholar 

  59. Blomqvist P, Lönnermark A (2001) Characterization of the combustion products in large-scale fire tests: comparison of three experimental configurations. Fire Mater 25:71–81

    Article  Google Scholar 

  60. Babrauskas V, Parker WJ, Mulholland G, Twilley WH (1994) The phi meter: a simple, fuel-independent instrument for monitoring combustion equivalence ratio. Rev Sci Instrum 65(7):2367–2375

    Article  Google Scholar 

  61. Lönnermark A, Babrauskas V (1997) TOXFIRE – fire characteristics and smoke gas analyses in under-ventilated large-scale combustion experiments: theoretical background and calculations. SP Swedish National Testing and Research Institute, Borås

    Google Scholar 

  62. Ingason H (2003) Fire development in catastrophic tunnel fires (CTF). In: Ingason H (ed) International symposium on catastrophic tunnel fires (CTF), Borås, Sweden, 20–21 November 2003. SP Swedish National Testing and Research Institute, pp 31–47

    Google Scholar 

  63. Ingason H (1995) Effects of ventilation on heat release rate of Pool fires in a model tunnel. SP Swedish National Testing and Research Institute, Borås

    Google Scholar 

  64. Ingason H (1995) Fire experiments in a model tunnel using Pool fires – experimental data. SP Swedish National Testing and Research Institute, Borås

    Google Scholar 

  65. Lönnermark A, Blomqvist P, Månsson M, Persson H (1997) TOXFIRE – fire characteristics and smoke gas analysis in under-ventilated large-scale combustion experiments: tests in the ISO 9705 room. SP Swedish National Testing and Research Institute, Borås

    Google Scholar 

  66. Lönnermark A (2005) On the characteristics of fires in tunnels. Doctoral thesis, Department of Fire Safety Engineering, Lund University, Lund

    Google Scholar 

  67. Ingason H (2005) Fire dynamics in tunnels. In: Carvel RO, Beard AN (eds) The handbook of tunnel fire safety. Thomas Telford Publishing, London, pp 231–266

    Chapter  Google Scholar 

  68. Grant GB, Drysdale D (1995) Estimating heat release rates from large-scale tunnel fires. In: Fire safety science – proceedings of the fifth international symposium, Melbourne, pp 1213–1224

    Google Scholar 

  69. Gottuk DT, Roby RJ, Beyler CL (1995) The role of temperature on carbon monoxide production in compartment fires. Fire Saf J 24:315–331

    Article  Google Scholar 

  70. Tsuchiya Y (1994) CO/CO2 ratios in fire. In: Fire safety science – proceedings of the fourth international symposium, Ottawa, Canada, 13–17 June 1994. IAFSS, pp 515–526

    Google Scholar 

  71. Bettis RJ, Jagger SF, Wu Y (1993) Interim validation of tunnel fire consequence models: summary of phase 2 tests. Health and Safety Executive, Buxton

    Google Scholar 

  72. Li YZ, Ingason H (2018) Influence of fire suppression on combustion products in tunnel fires. Fire Saf J 97:96–110

    Article  Google Scholar 

  73. Beyler CL (1985) Major species production by solid fuels in a two layer compartment fire environment. In: Fire safety science – proceedings of the first international symposium, Gaithersburg, USA, 7–11 October 1985. IAFSS, pp 431–440

    Google Scholar 

  74. Lönnermark A, Claesson A, Lindström J, Li YZ, Kumm M, Ingason H (2014) Gas composition during a fire in a train carriage. In: Proceedings from the sixth international symposium on tunnel safety and security (ISTSS 2014), Marseille, France, 12–14 March 2014. SP Technical Research Institute of Sweden

    Google Scholar 

  75. Lönnermark A, Blomqvist P (2005) Emissions from fires in electrical and electronics waste. SP Swedish National Testing and Research Institute, Borås

    Google Scholar 

  76. Lönnermark A, Blomqvist P (2005) Emissions from tyre fires. SP Swedish National Testing and Research Institute, Borås

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ingason, H., Li, Y.Z., Lönnermark, A. (2024). Combustion Products from Fires. In: Tunnel Fire Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-031-53923-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53923-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53922-0

  • Online ISBN: 978-3-031-53923-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics