Skip to main content

Fire and Explosion Safety of Alternative Fuel Vehicles

  • Chapter
  • First Online:
Tunnel Fire Dynamics

Abstract

This chapter gives a summary of various types of alternative fuel vehicles and some incidents reported in the literature. It also summarizes different fire scenarios, including jet fires, spilled fires, battery vehicle fires and fireballs. Many of these issues have also been discussed in previous chapters. The focus is on the explosion safety hazards of alternative fuel vehicles. These explosion hazards are tank rupture, BLEVE and gas cloud explosion. The methods of calculating blast wave pressures in an open environment are described. The difference between a tunnel explosion and an open explosion is discussed. Existing knowledge of explosion hazards in tunnels is summarised. Examples of individual explosion hazards are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li YZ (2019) Study of fire and explosion hazards of alternative fuel vehicles in tunnels. Fire Saf J 110:102871

    Article  Google Scholar 

  2. NGVA (2017) Statistical report 2017. NGVA Europe

    Google Scholar 

  3. NGVA (2017) Vehicle catalogue June 2017. NGVA Europe

    Google Scholar 

  4. IEA (2022) Global EV outlook 2022. International Energy Agency

    Google Scholar 

  5. Li YZ (2018) Study of fire and explosion hazards of alternative fuel vehicles in tunnels, RISE Rapport 2018:20. RISE Research Institutes of Sweden, Borås

    Google Scholar 

  6. Lönnermark a new energy carriers in tunnels. (2010). In: Lönnermark A, Ingason H (eds) Proceedings from the fourth international symposium on tunnel safety and security. SP Technical Research Institute of Sweden, Frankfurt am Main, pp 31–46

    Google Scholar 

  7. Li YZ, Ingason H (2018) Editorial: tunnel fire safety. Fire Saf J 97:85–86

    Google Scholar 

  8. Ingason H, Li YZ, Lönnermark A (2015) Tunnel fire dynamics. Springer, New York

    Google Scholar 

  9. Gehandler J, Lönnermark A (2019) CNG vehicle containers exposed to local fires. RISE Rapport 2019:120

    Google Scholar 

  10. Weerheijm J (2014) Explosion risks and consequences for tunnels. In: ISTSS 6th international symposium on tunnel safety and security. SP Technical Research Institute of Sweden, Marseille, pp 49–62

    Google Scholar 

  11. Groethe M, Merilo E, Colton J, Chiba S, Sato Y, Iwabuchi H (2007) Large-scale hydrogen deflagrations and detonations. Int J Hydrog Energy 32:2125–2133

    Article  Google Scholar 

  12. Baraldi D, Kotchourko A, Lelyakin A, Yanez J, Middha P, Hansen OR, Gavrikov A, Efimenko A, Verbecke F, Makarov D, Molkov V (2009) An inter-comparison exercise on CFD model capabilities to simulate hydrogen deflagrations in a tunnel. Int J Hydrog Energy 34:7862–7872

    Article  Google Scholar 

  13. Gu X, Zhang J, Pan Y, Ni Y, Ma C, Zhou W, Wang Y (2020) Hazard analysis on tunnel hydrogen jet fire based on CFD simulation of temperature field and concentration field. Saf Sci 122:104532

    Google Scholar 

  14. Xie Y, Lv N, Wang X, Wu D, Wang S (2021) Thermal and fire characteristics of hydrogen jet flames in the tunnel at longitudinal ventilation strategies. Fuel 306:121659

    Google Scholar 

  15. Molkov V, Dery W (2020) The blast wave decay correlation for hydrogen tank rupture in a tunnel fire. Int J Hydrog Energy 45(55):31289–31302

    Google Scholar 

  16. Kudriakov S, Studer E, Bernard-Michel G, Bouix D, Domergue L, Forero D, Gueguen H, Ledier C, Manicardi P, Martin M, Sauzedde F (2022) Full-scale tunnel experiments: blast wave and fireball evolution following hydrogen tank rupture. Int J Hydrog Energy 47(43):18911–18933

    Google Scholar 

  17. From A, Wiberg G (2019) Brand i biogasbuss Klaratunneln 2019-03-10. Storstockholms brandförsvar

    Google Scholar 

  18. Natural Gas Systems: Suggested Changes to Truck & Motorcoach Regulations & Inspection Procedures (2013) U.S. Department of Transportation (FMCSA), Report No. FMCSA-RRT-13-044

    Google Scholar 

  19. Additional information for ECE/TRANS/WP.15/2015/6e – Use of Liquefied Petroleum Gas (LPG) and Compressed Natural Gas (CNG) as fuel for vehicles carrying dangerous goods: Focus on CNG safety (2015) Economic Commission for Europe, Inland Transport Committee, Working Party on the Transport of Dangerous Goods

    Google Scholar 

  20. Hynynen J, Quant M, Pramanik R, Olofsson A, Li YZ, Arvidson M, Andersson P (2023) Electric vehicle fire safety in enclosed spaces. RISE Rapport 2023:42

    Google Scholar 

  21. Lihou DA, Maund JK (1982) Thermal radiation from fireballs. IChemE Symp Ser 71:191–225

    Google Scholar 

  22. Roberts AF (1982) Thermal radiation hazards from releases of LPG from pressurised storage. Fire Saf J 4:197–212

    Article  Google Scholar 

  23. Guidelines for Vapor Cloud Explosion, Pressure Vessel Burst, BLEVE, and Flash Fire Hazards (2010) 2nd edn. Wiley, Hoboken

    Google Scholar 

  24. Brode HL (1959) Blast wave from a spherical charge. Phys Fluids 2(2):217–229

    Article  Google Scholar 

  25. Prugh RW (1991) Quantitative evaluation of “Bleve” hazards. J Fire Prot Eng 3(1):9–24

    Article  Google Scholar 

  26. Baker WE, Kulesz J, Ricker R, Bessey R, Westine P, Parr V, Oldham G (1975) Workbook for predicting pressure wave and fragment effects of exploding propellant tanks and gas storage vessels

    Google Scholar 

  27. Silvestrini M, Genova B, Trujillo FJL (2009) Energy concentration factor. A simple concept for the prediction of blast propagation in partially confined geometries. J Loss Prev Process Ind 22:449–454

    Article  Google Scholar 

  28. Yao G, Zhang B, Xiu G, Bai C, Liu P (2013) The critical energy of direct initiation and detonation cell size in liquid hydrocarbon fuel/air mixtures. Fuel 113:331–339

    Article  Google Scholar 

  29. Smith AC, Sapko MJ (2005) Detonation wave propagation in underground mine entries. J Mine Vent Soc S Afr 58:20–25

    Google Scholar 

  30. Smith PD, Vismeg P, Teo LC, Tingey L (1998) Blast wave transmission along rough-walled tunnels. Int J Impact Eng 21(6):419–432

    Article  Google Scholar 

  31. Pavan Kumar CVLCS, Hitesh Reddy C, Rahul Sai L, Dharani Kumar KSS, Nagaraja SR (2017) Attenuation of shock waves using perforated plates. IOP Conf Ser Mater Sci Eng 225

    Google Scholar 

  32. Thomas G, Oakley G, Bambrey R (2010) An experimental study of flame acceleration and deflagration to detonation transition in representative process piping. Process Saf Environ Prot 88:75–90

    Article  Google Scholar 

  33. UPTUN (2008) Workpackage 2 Fire development and mitigation measures – D212. Explosion effects in traffic tunnels

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ingason, H., Li, Y.Z., Lönnermark, A. (2024). Fire and Explosion Safety of Alternative Fuel Vehicles. In: Tunnel Fire Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-031-53923-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53923-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53922-0

  • Online ISBN: 978-3-031-53923-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics