Skip to main content

Tenability

  • Chapter
  • First Online:
Tunnel Fire Dynamics

Abstract

One of the most important issues during a fire in a tunnel is the possibility for a safe escape. During an evacuation, tunnel users may be exposed to toxic gases, radiation, high temperatures and dense smoke. In this chapter the most important consequences of exposure to gas components, radiation and convective heat are presented. Examples of asphyxiant and irritant gases and the effect on evacuating people are presented. Different models for estimating time to incapacitation and other endpoints due to exposure are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hull TR, Stec AA (2010) Introduction to fire toxicity. In: Stec A, Hull R (eds) Fire toxicity. CRC

    Google Scholar 

  2. Tan K-H, Wang T-L (2005) Asphyxiants: simple and chemical. Ann Disaster Med 4(1):S35–S40

    Google Scholar 

  3. Purser DA (2008) Assessment of hazards to occupants from smoke, toxic gases, and heat. In: The SFPE handbook of fire protection engineering, 4th edn. National Fire Protection Association, Quincy

    Google Scholar 

  4. Nelson GL (1998) Carbon monoxide and fire toxicity: a review and analysis of recent work. Fire Technol 34(1):39–58

    Article  Google Scholar 

  5. Varon J, Marik PE, Fromm RE, Gueler A (1999) Carbon monoxide poisoning: a review for clinicians. J Emerg Med 17(1):87–93

    Article  Google Scholar 

  6. EPA (2012) Acute exposure guideline levels (AEGLs): hydrogen fluoride results. United States Environmental Protection Agency

    Google Scholar 

  7. Acute Exposure Guideline Levels for Selected Airborne Chemicals, vol 4 (2004)

    Google Scholar 

  8. ISO (2012) Life-threatening components of fire – guidelines for the estimation of time to compromised tenability in fires. International Organization for Standardization

    Google Scholar 

  9. IDLH (1994) Documentation for immediately dangerous to life or health concentrations (IDLHs) – chemical listing and documentation of revised IDLH values (as of 3/1/95). NIOSH

    Google Scholar 

  10. AFS (2011) Occupational exposure limit values. The Swedish Work Environment Authority

    Google Scholar 

  11. ISO (2004) Estimation of the lethal toxic potency of fire effluents. International Organization for Standardization

    Google Scholar 

  12. Levin BC, Paabo M, Gurman JL, Clark HM, Yoklavich MF (1988) Further studies of the toxicological effects of different time exposures to the individual and combined fire gases: carbon monoxide, hydrogen cyanide and reduced oxygen. In: Polyurethane ’88, Proceedings of the 31st Society of Plastics Meeting, Lancaster, PA. Technomic Publishing Co, pp 249–252

    Google Scholar 

  13. Purser DA (2010) Toxic hazard calculation models for use with fire effluents data. In: Stec A, Hull R (eds) Fire toxicity. CRC

    Google Scholar 

  14. Purser D (2014) Models for toxicity and tenability limits. Personal communication, January 5

    Google Scholar 

  15. Pauluhn J (2016) Risk assessment in combustion toxicology: should carbon dioxide be recognized as a modifier of toxicity or separate toxicological entity? Toxicol Lett 262:142–152

    Article  Google Scholar 

  16. Pauluhn J (2017) Corrigendum to “Risk assessment in combustion toxicology: Should carbon dioxide be recognized as a modifier of toxicity or separate toxicological entity?” [Toxicol Lett 262:142–152, 2016]. Toxicol Lett 275:27

    Article  Google Scholar 

  17. BFS (2011) Boverkets allmänna råd om analytisk dimensionering av byggnaders brandskydd. Boverkets Författningsamling

    Google Scholar 

  18. Ingason H, Lönnermark A, Li YZ (2011) Runehamar tunnel fire tests, SP Report, vol 2011. SP Technicial Research Institute, p 55

    Google Scholar 

  19. Ingason H, Lönnermark A (2005) Heat release rates from heavy goods vehicle trailers in tunnels. Fire Saf J 40:646–668

    Article  Google Scholar 

  20. Lönnermark A (2005) On the characteristics of fires in tunnels. Doctoral thesis, Department of Fire Safety Engineering, Lund University, Lund, Sweden

    Google Scholar 

  21. Brandt AB (2003) Presentation of test result from large scale fire tests at the Runehamar tunnel. In: Ingason H (ed) International symposium on Catastrophic Tunnel Fires (CTF), SP Report 2004:05. SP Swedish National Testing and Research Institute, Borås, pp 117–120

    Google Scholar 

  22. Lighty JS, Pershing DW (1993) Control of pollutant emissions from waste burning. University of Utah

    Google Scholar 

  23. Risholm-Sundman M, Vestin E (2005) Emissions during combustion of particleboard and glued veneer. Holz Roh Werkst 63:179–185

    Article  Google Scholar 

  24. Grønli M (1996) A theoretical and experimental study of the thermal degradation of biomass. Doctoral Thesis, The Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  25. Zevenhoven R, Axelsen EP, Kilpinen P, Hupa M (1999) Nitrogen oxides from nitrogen-containing waste fuels at FBC conditions – Part 1. In: The 39th IEA FBC meeting, Madrid

    Google Scholar 

  26. Simonson M, Tuovinen H, Emanuelsson V (2000) Formation of hydrogen cyanide in fires – a literature and experimental investigation. SP Swedish National Testing and Research Institute, Borås

    Google Scholar 

  27. Tuovinen H, Blomqvist P (2003) Modelling of hydrogen cyanide formation in room fires. SP Swedish National Testing and Research Institute, Borås

    Google Scholar 

  28. Hansson K-M, Samuelsson J, Tullin C, Åmand L-E (2004) Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combust Flame 137:265–277

    Article  Google Scholar 

  29. Ingason H, Bergqvist A, Lönnermark A, Frantzich H, Hasselrot K (2005) Räddningsinsatser i vägtunnlar. Räddningsverket

    Google Scholar 

  30. Lönnermark A, Blomqvist P (2006) Emissions from an automobile fire. Chemosphere 62:1043–1056

    Article  Google Scholar 

  31. Ingason H (ed) (2005) TG2.2 – Target criteria. UPTUN Report WP2 – Task Group 2

    Google Scholar 

  32. Gehandler J, Ingason H, Lönnermark A, Frantzich H, Strömgren M (2013) Performance-based requirements and recommendations for fire safety in road tunnels (FKR-BV12). SP Technical Research Institute of Sweden

    Google Scholar 

  33. TRV (2011) TRVR Tunnel 11: Trafikverkets tekniska råd Tunnel. Trafikverket

    Google Scholar 

  34. Truchot B, Fouillen F, Collet S (2018) An experimental evaluation of toxic gas emissions from vehicle fires. Fire Saf J 97:111–118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ingason, H., Li, Y.Z., Lönnermark, A. (2024). Tenability. In: Tunnel Fire Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-031-53923-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53923-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53922-0

  • Online ISBN: 978-3-031-53923-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics