Skip to main content

Visibility

  • Chapter
  • First Online:
Tunnel Fire Dynamics

Abstract

Visibility is very important for evacuation during a fire and, therefore, a very important parameter for fire safety in a tunnel. There are different methods for estimating the visibility in smoke-filled spaces, using mass specific extinction coefficient or the mass optical density. For both methodologies there are experimental values available for some materials of interest. First, the mass extinction coefficient methodology is presented and at the end compared and correlated to the mass optical density methodology. Values of these parameters for selected materials are presented, and conversion of values for one of the parameters into the other is discussed. Finally, the effect on the walking speed during egress is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mulholland GW, Liggett W, Koseki H (1997) The effect of pool fire diameter on the property of smoke produced by crude oil fires. Fire Sci Technol 17(1):64–69

    Article  Google Scholar 

  2. Widmann JF, Yang JC, Smith TJ, Manzello SL, Mulholland GW (2003) Measurement of the optical extinction coefficients of post-flame soot in the infrared. Combust Flame 134:119–129

    Article  Google Scholar 

  3. Mulholland GW, Choi MY (1998) Measurement of the mass specific extinction coefficient for acetylene and ethene smoke using the large agglomerate optics facility. In: Twenty-seventh symposium (international) on combustion. The Combustion Institute, pp 1515–1522

    Google Scholar 

  4. Jin T, Yamada T (1985) Irritating effects of fire smoke on visibility. Fire Sci Technol 5(1):79–89

    Article  Google Scholar 

  5. Jin T (2008) Visibility and human behavior in fire smoke. In: The SFPE handbook of fire protection engineering. National Fire Protection Engineering, pp 2–54–52–66

    Google Scholar 

  6. Mulholland G, Croarkin C (2000) Specific extinction coefficient of flame generated smoke. Fire Mater 24:227–230

    Article  Google Scholar 

  7. Mulholland GW, Johnsson EL, Fernandez MG, Shear DA (2000) Design and testing of a new smoke concentration meter. Fire Mater 24:231–243

    Article  Google Scholar 

  8. ISO (2007) Life-threatening components of fire – guidelines for estimation of time available for escape using fire data

    Google Scholar 

  9. Tewarson A (1988) Generation of heat and chemical compounds in fires. In: DiNenno PJ, Beyler CL, Custer RLP, Walton WD, Watts JM (eds) SFPE handbook of fire protection engineering. 1. NFPA, pp 1–179 – 171–199

    Google Scholar 

  10. Tewardson A (2008) Generation of heat and gaseous, liquid, and solid products in fires. In: SFPE handbook of fire protection engineering. NFPA, pp 2–109–103–194

    Google Scholar 

  11. Ingason H (2012) Fire dynamics in tunnels. In: Beard AN, Carvel RO (eds) The handbook of tunnel fire safety, 2 ICE Publishing, London, pp. 273–304

    Google Scholar 

  12. Steinert C (1994) Smoke and heat production in tunnel fires. In: The international conference on fires in tunnels. SP Swedish National Testing and Research Institute, Borås, pp 123–137

    Google Scholar 

  13. Ingason H, Li YZ, Lönnermark A (2015) Runehamar tunnel fire tests. Fire Saf J 71:134–149

    Article  Google Scholar 

  14. Ingason H, Lönnermark A, Li YZ (2011) Runehamar tunnel fire tests, vol 2011. SP Technicial Research Institute, SP Report, p 55

    Google Scholar 

  15. Frantzich H, Nilsson D (2003) Utrymning genom tät rök: beteende och förflyttning. Avd för brandteknik, Lunds tekniska högskola, Lund

    Google Scholar 

  16. Fridolf K (2014) Walking speed as function of extinction coefficient. Personal communication, January 10

    Google Scholar 

  17. Jin T (1978) Visibility through smoke. J Fire Flam 9:135–157

    Google Scholar 

  18. Fridolf K, Andrée K, Nilsson D, Frantzich H (2013) The impact of smoke on walking speed. Fire Mater

    Google Scholar 

  19. BFS (2011) Boverkets allmänna råd om analytisk dimensionering av byggnaders brandskydd. Boverkets Författningsamling

    Google Scholar 

  20. Frantzich H (2000) Utrymning av tunnelbanaetåg – experiemntell utvärdering av möjligheten att utrymma i spårtunnel. Räddningsverket, Karlstad

    Google Scholar 

  21. Seike M, Kawabata N, Hasegawa M (2016) Experiments of evacuation speed in smoke-filled tunnel. Tunn Undergr Space Technol 53:61–67

    Article  Google Scholar 

  22. Seike M, Kawabata N, Hasegawa M (2017) Evacuation speed in full-scale darkened tunnel filled with smoke. Fire Saf J 91:901–907

    Article  Google Scholar 

  23. Seike M, Kawabata N, Hasegawa M (2020) Walking speed in completely darkened full-scale tunnel experiments. Tunn Undergr Space Technol 106:103621

    Article  Google Scholar 

  24. Seike M, Lu Y-C, Kawabata N, Hasegawa M (2021) Emergency evacuation speed distributions in smoke-filled tunnels. Tunn Undergr Space Technol 112:103934

    Article  Google Scholar 

  25. Yan G, Wang M, Yan T, Qin P (2022) Evacuation speed of human beings in road tunnels at different altitudes. Tunn Undergr Space Technol 128:104651

    Article  Google Scholar 

  26. Cao S, Wang Z, Li Y, Zheng G, Li X (2023) Walking performance of pedestrians in corridors under different visibility conditions. Travel Behav Soc 33:100609

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ingason, H., Li, Y.Z., Lönnermark, A. (2024). Visibility. In: Tunnel Fire Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-031-53923-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53923-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53922-0

  • Online ISBN: 978-3-031-53923-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics