Skip to main content

Fire Spread

  • Chapter
  • First Online:
Tunnel Fire Dynamics

Abstract

Fire spread is a very important issue during fires in tunnels. The elongated geometry of a tunnel with a relatively low ceiling height can cause the flames and hot gases to extend long distances along the ceiling, increasing the risk of fire spread. The use of ventilation in the tunnel as well as different types of vehicles, commodities and materials influences the fire spread. This chapter contains both a summary of traditional ignition and fire spread theory and experience especially related to situations in tunnels with risk for fire spread. Different aspects of spread and burning of liquids are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rew C, Deaves D Fire spread and flame length in ventilated tunnels – a model used in Channel tunnel assessments. In: Proceedings of the International Conference on Tunnel Fires and Escape from Tunnels, Lyon, France, 5–7 May 1999. Independent Technical Conferences Ltd, pp 397–406

    Google Scholar 

  2. Babrauskas V (2003) Ignition handbook. Fire Science Publishers, Issaquah

    Google Scholar 

  3. Wickström U (To be published) Heat transfer in fire technology. Draft 26 March 2013 edn.,

    Google Scholar 

  4. Quintiere JG (1998) Principals of fire behavior. Delmar Publishers

    Google Scholar 

  5. Drysdale D (1994) An introduction to fire dynamics. John Wiley & Sons

    Google Scholar 

  6. Kanury AM (1972) Ignition of cellulosic materials: a review. Fire Research Abstracts and Reviews 14:24–52

    Google Scholar 

  7. Dillon SE (1998) Analysis of the ISO9705 rom/corner test: simulations, correlations and heat flux measurements. M.S. Thesis, Department of Fire Protection Engineering, University of Maryland

    Google Scholar 

  8. Cleary TG, Quintiere JG (1991) Flammability characterization of foam plastics. NIST

    Book  Google Scholar 

  9. Hopkins DJ, Quintiere JG (1996) Material fire properties and predictions for thermoplastics. Fire Saf J 26:241–268

    Article  Google Scholar 

  10. Grexa O, Janssens M, White R, Dietenberger M (1998) Fundamental thermophysical prperties of materials derived from cone calorimeter measurements. In: Wood & Fire Safety: 3rd International Scientific Conference. The High Tatras, Slovak Republic, pp 139–147

    Google Scholar 

  11. Henderson A (1998) Predicting ignition time under transient heat flux using results from constant heat flux experiments. School of Engineering, Univ, Canterbury, Christchurch

    Google Scholar 

  12. Janssens ML (1991) Fundamental thermophysical characteristics of wood and their role in enclosure fire growth. Ph.D dissertation, University of Gent, Belgium

    Google Scholar 

  13. Harkleroad M. Unpublished NIST data

    Google Scholar 

  14. Grexa O, Horváthová E (1997) Osvald a cone calorimeter studies of wood species. In: International Symposium on Fire Science and Technology, Seoul. Korean Institute of Fire Science & Enginering, pp 77–84

    Google Scholar 

  15. Dietenberger M, Grexa O (1999) Analytical model of flame spread in full-scale room/corner tests (ISO 9705). In: Fire & Materials ‘99, 6th International Conference. Interscience Communications Ltd, pp 211–222

    Google Scholar 

  16. NFPA (1981) NFPA Handbook. National Fire Protection Association

    Google Scholar 

  17. Glassman I, Dryer F (1980/81) Flame spreading across liquid fuels. Fire Saf J 3:123–138

    Article  Google Scholar 

  18. Gottuk DT, White DA (2008) Liquid Fuel Fires. In: DiNenno P (ed) The SFPE handbook of fire protection engineering. National Fire Protection Association, Quincy, pp 2-337–332-357

    Google Scholar 

  19. Ingason H Small Scale Test of a Road Tanker Fire (October 10-11 1994) In: Ivarson E (ed) International Conference on Fires in Tunnels. SP Swedish National Testing and Research Institute, Borås, pp 238–248

    Google Scholar 

  20. Ingason H, Li YZ (2017) Spilled Liquid Fires in Tunnels. Fire Saf J 91:399–406

    Article  Google Scholar 

  21. White D et al (1997) Flame spread on aviation fuels. Fire Saf J 28:1–31

    Article  Google Scholar 

  22. Xie W, Zhang Y, Li J, Mao P, Chen L (2018) Experimental study on characteristics of flame spread over diesel and nbutanol pool fires in tunnel. Tunn Undergr Space Technol 79:286–292

    Article  Google Scholar 

  23. Lönnermark A, Kristensson P, Helltegen M, Bobert M (12–14 March 2008) Fire suppression and structure protection for cargo train tunnels: macadam and HotFoam. In: Lönnermark A, Ingason H (eds) 3rd International Symposium on Safety and Security in Tunnels (ISTSS 2008). SP Technical Research Institute of Sweden, Stockholm, pp 217–228

    Google Scholar 

  24. de Ris J (1970) Duct fires. Combust Sci Technol 2:239–258

    Article  Google Scholar 

  25. Ingason H (2012) Fire dynamics in tunnels. In: Beard AN, Carvel RO (eds) The handbook of tunnel fire safety, 2nd edn. ICE Publishing, London, pp 273–304

    Google Scholar 

  26. Koseki H (1989) Combustion properties of large liquid pool fires. Fire Technol 25(August):241–255

    Article  Google Scholar 

  27. Tewardson A (2008) Generation of heat and gaseous, liquid, and solid products in fires. In: DiNenno PJ, Drysdale D, Beyler CL et al (eds) The SFPE handbook of fire protection engineering, 4th edn. National Fire Protection Association, Quincy, pp 3-109–103-194

    Google Scholar 

  28. Ingason H, Li YZ, Lönnermark A (2015) Runehamar tunnel fire tests. Fire Saf J 71:134–149

    Article  Google Scholar 

  29. Ingason H, Lönnermark A, Li YZ (2011) Runehamar tunnel fire tests. SP Technicial Research Institute, SP Report 2011, p 55

    Google Scholar 

  30. Ingason H, Bergqvist A, Lönnermark A, Frantzich H, Hasselrot K (2005) Räddningsinsatser i vägtunnlar, P21-459/05 Räddningsverket

    Google Scholar 

  31. Lönnermark A, Ingason H (2006) Fire Spread and flame length in large-scale tunnel fires. Fire Technol 42(4):283–302

    Article  Google Scholar 

  32. BEA-TT (2006) Rapport provisoire d’enquête technique sur l’incendie de poids lours survenu dans le tunnel du Fréjus le 4 juin 2005. Bureau d’Enquêtes sur les Accidents de Transport Terrestre, France

    Google Scholar 

  33. Brinson A (2005) Fire in French tunnel kills two. Eurosprinkler

    Google Scholar 

  34. Bettelini M, Neuenschwander H, Henke A, Gagliardi M, Steiner W The fire in the St Gotthard tunnel of October 24, 2001. In: Ingason H (ed) International symposium on catastrophic tunnel fires (CTF). SP Swedish National Testing and Research Institute, Borås., 20–21 November 2003, pp 49–68

    Google Scholar 

  35. Ingason H Fire Development in Catastrophic Tunnel Fires (CTF). In: Ingason H (ed) International Symposium on Catastrophic Tunnel Fires (CTF), Borås., 20–21 November 2003. SP Swedish National Testing and Research Institute, pp. 31–47

    Google Scholar 

  36. Duffé P, Marec M (1999) Report on the technical enquiry into the fire on 24 March 1999 in the Mont Blanc tunnel. Ministry of the Interior, Ministry for Equipment, Transport and Accommodation, France

    Google Scholar 

  37. Wang T, Tang Y, Wang Z, An W, Chen X (2023) Flame spread over cables in a utility tunnel: effect of longitudinal wind and inclination angle. Tunn Undergr Space Technol 131

    Google Scholar 

  38. Byrne E, Georgieva K, Carvel R (2018) Fires in ducts: a review of the early research which underpins modern tunnel fire safety engineering. Tunn Undergr Space Technol 81:306–314

    Article  Google Scholar 

  39. Torero JL (2008) Flaming ignition of solid fuels. In: DiNenno P (ed) The SFPE handbook of fire protection engineering. National Fire Protection Association, Quincy, pp 2–262

    Google Scholar 

  40. Beard AN, Drysdale DD, Bishop SR (1995) A non-linear model of major fire spread in a tunnel. Fire Saf J 24:333–357

    Article  Google Scholar 

  41. Beard AN (1997) A model for predicting fire spread in tunnels. J Fire Sci 15(July/August):277–307

    Article  Google Scholar 

  42. Beard AN Major fire spread in a tunnel: a non-linear model. In: Vardy AE (ed) Fourth International Conference on Safety in Road and Rail Tunnels, Madrid, Spain, 2–6 April 2001. University of Dundee and Independent Technical Conferences Ltd., pp 467–476

    Google Scholar 

  43. Beard AN Major fire spread in a tunnel: a non-linear model with flame impingement. In: Proceedings of the 5th International Conference on Safety in Road and Rail Tunnels, Marseille, France, 6–10 October 2003. University of Dundee and Independent Technical Conferences Ltd, pp 511–521

    Google Scholar 

  44. Beard AN (25–27 October 2004) Major fire spread in a tunnel, assuming flame impingement: effect of separation and ventilation velocity. In: Fifth International Conference on Tunnel Fires. Tunnel Management International, London, pp 317–326

    Google Scholar 

  45. Carvel RO, Beard AN, Jowitt PW The influence of longitudinal ventilation on fire spread between HGV fires in tunnels. In: Fifth International Conference on Tunnel Fires. Tunnel Management International, London., 25–27 October 2004, pp 307–316

    Google Scholar 

  46. Hansen R, Ingason H (2011) An engineering tool to calculate heat release rates of multiple objects in underground structures. Fire Saf J 46(4):194–203

    Google Scholar 

  47. Hansen R, Ingason H (2012) Heat release rates of multiple objects at varying distances. Fire Saf J 52:1–10

    Article  Google Scholar 

  48. Ingason H (2009) Design fire curves in tunnels. Fire Saf J 44(2):259–265

    Article  Google Scholar 

  49. Numajiri F, Furukawa K (1998) Short communication: mathematical expression of heat release rate curve and proposal of ‘Burning Index’. Fire Mater 22:39–42

    Article  Google Scholar 

  50. Ingason H, Li YZ (2011) Model scale tunnel fire tests with point extraction ventilation. J Fire Prot Eng 21(1):5–36

    Article  Google Scholar 

  51. Li YZ, Lei B, Ingason H (2011) The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires. Fire Saf J 46(4):204–210

    Google Scholar 

  52. Li YZ, Ingason H (2015) Fire-induced ceiling jet characteristics in tunnels under different ventilation conditions. SP Technical Research Institute of Sweden, SP Report 2015:23, Borås

    Google Scholar 

  53. He K, Li YZ, Ingason H, Cheng X (2023) Fire spread among multiple vehicles in tunnels using longitudinal ventilation. Tunn Undergr Space Technol 133:104967

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ingason, H., Li, Y.Z., Lönnermark, A. (2024). Fire Spread. In: Tunnel Fire Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-031-53923-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53923-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53922-0

  • Online ISBN: 978-3-031-53923-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics