Skip to main content

CT Reconstruction from Few Planar X-Rays with Application Towards Low-Resource Radiotherapy

  • Conference paper
  • First Online:
Deep Generative Models (MICCAI 2023)

Abstract

CT scans are the standard-of-care for many clinical ailments, and are needed for treatments like external beam radiotherapy. Unfortunately, CT scanners are rare in low and mid-resource settings due to their costs. Planar X-ray radiography units, in comparison, are far more prevalent, but can only provide limited 2D observations of the 3D anatomy. In this work, we propose a method to generate CT volumes from few (<5) planar X-ray observations using a prior data distribution, and perform the first evaluation of such a reconstruction algorithm for a clinical application: radiotherapy planning. We propose a deep generative model, building on advances in neural implicit representations to synthesize volumetric CT scans from few input planar X-ray images at different angles. To focus the generation task on clinically-relevant features, our model can also leverage anatomical guidance during training (via segmentation masks). We generated 2-field opposed, palliative radiotherapy plans on thoracic CTs reconstructed by our method, and found that isocenter radiation dose on reconstructed scans have <1% error with respect to the dose calculated on clinically acquired CTs using \(\le \)4 X-ray views. In addition, our method is better than recent sparse CT reconstruction baselines in terms of standard pixel and structure-level metrics (PSNR, SSIM, Dice score) on the public LIDC lung CT dataset. Code is available at: https://github.com/wanderinrain/Xray2CT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We assume a uniform dimension d here for simplicity, but our method can handle arbitrary dimensions.

References

  1. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  3. Bodensteiner, D.: RayStation: external beam treatment planning system. Med. Dosim. 43(2), 168–176 (2018)

    Article  Google Scholar 

  4. Broder, J.: Imaging the chest: the chest radiograph. In: Broder, J. (ed.) Diagnostic Imaging for the Emergency Physician, pp. 185–296. W.B. Saunders, Saint Louis (2011). https://doi.org/10.1016/B978-1-4160-6113-7.10005-5. https://www.sciencedirect.com/science/article/pii/B9781416061137100055

  5. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  6. Ge, R., et al.: X-CTRSNet: 3D cervical vertebra CT reconstruction and segmentation directly from 2D X-ray images. Knowl.-Based Syst. 236, 107680 (2022)

    Article  Google Scholar 

  7. Hricak, H., et al.: Medical imaging and nuclear medicine: a lancet oncology commission. Lancet Oncol. 22(4), e136–e172 (2021)

    Article  Google Scholar 

  8. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  9. Jiang, Y., et al.: 3D volume reconstruction from single lateral X-ray image via cross-modal discrete embedding transition. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 322–331. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_33

    Chapter  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Article  Google Scholar 

  14. Sharp, G.C., et al.: Plastimatch: an open source software suite for radiotherapy image processing. In: Proceedings of the XVI’th International Conference on the Use of Computers in Radiotherapy (ICCR), Amsterdam, Netherlands (2010)

    Google Scholar 

  15. Shen, L., Pauly, J., Xing, L.: NeRP: implicit neural representation learning with prior embedding for sparsely sampled image reconstruction. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  16. Shen, L., Zhao, W., Xing, L.: Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nat. Biomed. Eng. 3(11), 880–888 (2019)

    Article  Google Scholar 

  17. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7462–7473 (2020)

    Google Scholar 

  18. Sun, Y., Liu, J., Xie, M., Wohlberg, B., Kamilov, U.S.: CoIL: coordinate-based internal learning for tomographic imaging. IEEE Trans. Comput. Imaging 7, 1400–1412 (2021)

    Article  Google Scholar 

  19. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7537–7547 (2020)

    Google Scholar 

  20. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  21. Xie, Y., et al.: Neural fields in visual computing and beyond. Comput. Graphics Forum 41, 641–676 (2022)

    Google Scholar 

  22. Ying, X., Guo, H., Ma, K., Wu, J., Weng, Z., Zheng, Y.: X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10619–10628 (2019)

    Google Scholar 

  23. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)

    Google Scholar 

  24. Zha, R., Zhang, Y., Li, H.: NAF: neural attenuation fields for sparse-view CBCT reconstruction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part VI, vol. 13436, pp. 442–452. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_42

  25. Zhu, T.C., et al.: Report of AAPM task group 219 on independent calculation-based dose/MU verification for IMRT. Med. Phys. 48(10), e808–e829 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by NSF CAREER: IIS-1652633.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guha Balakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Y., Netherton, T., Court, L., Veeraraghavan, A., Balakrishnan, G. (2024). CT Reconstruction from Few Planar X-Rays with Application Towards Low-Resource Radiotherapy. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. MICCAI 2023. Lecture Notes in Computer Science, vol 14533. Springer, Cham. https://doi.org/10.1007/978-3-031-53767-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53767-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53766-0

  • Online ISBN: 978-3-031-53767-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics