Skip to main content

Pre-training with Diffusion Models for Dental Radiography Segmentation

  • Conference paper
  • First Online:
Deep Generative Models (MICCAI 2023)

Abstract

Medical radiography segmentation, and specifically dental radiography, is highly limited by the cost of labeling which requires specific expertise and labor-intensive annotations. In this work, we propose a straightforward pre-training method for semantic segmentation leveraging Denoising Diffusion Probabilistic Models (DDPM), which have shown impressive results for generative modeling. Our straightforward approach achieves remarkable performance in terms of label efficiency and does not require architectural modifications between pre-training and downstream tasks. We propose to first pre-train a Unet by exploiting the DDPM training objective, and then fine-tune the resulting model on a segmentation task. Our experimental results on the segmentation of dental radiographs demonstrate that the proposed method is competitive with state-of-the-art pre-training methods.

C. Alaka, E. Covili, H. Mayard and L. Misrachi—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unet* denotes the specific Unet architecture introduced in [7].

References

  1. Amit, T., Nachmani, E., Shaharbany, T., Wolf, L.: Segdiff: image segmentation with diffusion probabilistic models. arXiv:2112.00390 (2021)

  2. Bao, H., Dong, L., Wei, F.: Beit: BERT pre-training of image transformers. arXiv:2106.08254 (2021)

  3. Baranchuk, D., Voynov, A., Rubachev, I., Khrulkov, V., Babenko, A.: Label-efficient semantic segmentation with diffusion models. In: International Conference on Learning Representations (2022)

    Google Scholar 

  4. Brempong, E.A., Kornblith, S., Chen, T., Parmar, N., Minderer, M., Norouzi, M.: Decoder denoising pretraining for semantic segmentation. Trans. Mach. Learn. Res. (2022)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv:2003.04297 (2020)

  7. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, pp. 8780–8794. Curran Associates, Inc. (2021)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  9. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  10. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, pp. 6840–6851 (2020)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  12. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  13. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18–24 July 2021, Virtual Event (2021)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. CoRR (2015)

    Google Scholar 

  16. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning. ICML 2008 (2008). https://doi.org/10.1145/1390156.1390294

  17. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. (2010)

    Google Scholar 

  18. Wolleb, J., Sandkühler, R., Bieder, F., Valmaggia, P., Cattin, P.C.: Diffusion models for implicit image segmentation ensembles. In: International Conference on Medical Imaging with Deep Learning, pp. 1336–1348. PMLR (2022)

    Google Scholar 

  19. Wu, J., Fang, H., Zhang, Y., Yang, Y., Xu, Y.: Medsegdiff: medical image segmentation with diffusion probabilistic model. arXiv:2211.00611 (2022)

  20. Wu, J., Fu, R., Fang, H., Zhang, Y., Xu, Y.: Medsegdiff-v2: diffusion based medical image segmentation with transformer. arXiv:2301.11798 (2023)

  21. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  22. Xie, Z., et al.: Simmim: a simple framework for masked image modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9653–9663 (2022)

    Google Scholar 

  23. Xu, Z., et al.: Swin MAE: masked autoencoders for small datasets. arXiv:2212.13805 (2022)

  24. Zhang, Y., et al.: Datasetgan: efficient labeled data factory with minimal human effort. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10145–10155 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Rousseau .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 347 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rousseau, J., Alaka, C., Covili, E., Mayard, H., Misrachi, L., Au, W. (2024). Pre-training with Diffusion Models for Dental Radiography Segmentation. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. MICCAI 2023. Lecture Notes in Computer Science, vol 14533. Springer, Cham. https://doi.org/10.1007/978-3-031-53767-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53767-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53766-0

  • Online ISBN: 978-3-031-53767-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics