Skip to main content

The Source and Distribution of Heavy Metals in the Atmosphere Across Southeast Asia

  • Chapter
  • First Online:
Heavy Metal Remediation

Abstract

Atmospheric heavy metal (HMs) pollution that impacts the environment and human health is one of the increasingly concerning problems in developing countries. Southeast Asia (SEA) is now described as a dynamic and rapidly developing region and is facing problems of air pollution, including HMs in the atmosphere. According to the International Cancer Research Institute (IARC), some metals (e.g., Pb, As, Ni, Cd, Hg, Cd, Cr) are particularly harmful to human health. In this chapter, we focus on the knowledge of atmospheric HMs in the SEA region over the last 15 years, in which, the potential sources and spatio temporal distribution of atmospheric HMs in SEA were discussed in detail. Research on atmospheric HMs is unevenly distributed in the SEA region and most of the studies concentrated in countries such as Thailand, Malaysia, and Vietnam. By employing multivariable models, including PCA and PMF, studies show that both anthropogenic sources (e.g., transportation, biomass burning, and industrial processes) and natural sources (e.g., volcanic eruption and dust storms) can contribute to elevated atmospheric HMs. HMs concentrations in industrial areas are often higher than in urban/background locations. On a seasonal basis, HMs concentrations in the dry season are often higher than in the rainy season. Certain knowledge gaps pertaining to atmospheric HMs in the SEA region necessitate comprehensive investigation. Specifically, there is a need for rigorous research focused on elucidating the deposition of atmospheric HMs as well as research regarding atmospheric mercury (Hg). This chapter presents scientific information on atmospheric HMs pollution in SEA from both regulatory and research perspectives. It aims to enhance the understanding of HMs contaminations in the SEA region by providing updated and rigorous scientific analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASEAN (2022) ASEAN and the Growth of Regional Cooperation in Southeast Asia. https://asean.org/

  2. Agarwal A, Mangal A, Satsangi A, Lakhani A, Kumari KM (2017) Characterization, sources and health risk analysis of PM2.5 bound metals during foggy and non-foggy days in sub-urban atmosphere of Agra. Atmosp Res 197:121–131

    Article  CAS  Google Scholar 

  3. Ahmed YH, Chin XG, Zhao XM (2017) Microwave assisted digestion followed by ICP-MS for determination of trace metals in atmospheric and lake ecosystem. J Environ Sci 55:1–10. https://doi.org/10.1016/j.jes.2016.06.014

    Article  CAS  Google Scholar 

  4. Ahmed M, Guo X, Zhao XM (2016) Determination and analysis of trace metals and surfactant in air particulate matter during biomass burning haze episode in Malaysia. Atmosp Environ 141:219–229. https://doi.org/10.1016/j.atmosenv.2016.06.066

    Article  CAS  Google Scholar 

  5. Ali MM, Ali ML, Proshad R, Islam S, Rahman Z, Tusher TR (2020) Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuli river, Bangladesh. Human and Ecol Risk Assessm: an Int J 26:2646–2662. https://doi.org/10.1080/10807039.2019.1676635

    Article  CAS  Google Scholar 

  6. Ali M, Ali D, Hossain D, Al-Imran S, Khan Md, Osman BM (2021) Environmental Pollution with Heavy Metals: a Public Health Concern

    Google Scholar 

  7. Alias NF, Khan MF, Sairi NA, Zain SM, Suradi H, Rahim HA, Latif MT (2020) Characteristics, emission sources, and risk factors of heavy metals in PM2.5 from southern Malaysia. ACS Earth and Space Chem 4(8):1309–1323. https://doi.org/10.1021/acsearthspacechem.0c00103

  8. Alves C, Rienda IC, Vicente A, Vicente E, Gonçalves C, Candeias C, Rocha F, Lucarelli F, Pazzi G, Kováts N, Hubai K, Pio C, Tchepel O (2021) Morphological properties, chemical composition, cancer risks and toxicological potential of airborne particles from traffic and urban background sites. Atmos Res 264:105837. https://doi.org/10.1016/j.atmosres.2021.105837

  9. Amil N, Latif MT, Khan MF, Mohamad M (2016) Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment. Atmospheric Chem Phys 16(8):5357–5381. https://doi.org/10.5194/acp-16-5357-2016

  10. Bagtasa G, Cayetano MG, Yuan CS (2018) Seasonal variation and chemical characterization of PM2.5 in Northwestern Philippines. Atmos Chem Phys 18:4965–4980. https://doi.org/10.5194/acp-18-4965-2018

    Article  CAS  Google Scholar 

  11. Betha R, Behera SN, Balasubramanian R (2014) Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk. Environ Sci Technol 48(8):4327–4335. https://doi.org/10.1021/es405533d

    Article  CAS  Google Scholar 

  12. Betha R, Pradani M, Lestari P, Joshi UM, Reid JS, Balasubramanian R (2013) Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment. Atmosp Res 122:571–578. https://doi.org/10.1016/j.atmosres.2012.05.024

    Article  CAS  Google Scholar 

  13. Bui DL, Le Hoang A, Ngo QK, Nghiem XT (2023) Chemical characterization, source apportionment, and health risk assessment nexus of PM2.5-bound major heavy metals in Bien Hoa city, southern Vietnam. Atmosp Environ X 17:100209. https://doi.org/10.1016/j.aeaoa.2023.100209

  14. Calvo AI, Pont V, Olmo FJ, Castro A, Alados-Arboledas L, Vicente AM, Fernández-Raga M, Fraile R (2012) Air masses and weather types: a useful tool for characterizing precipitation chemistry and wet deposition. Aerosol and Air Quality Res 12:856–878. https://doi.org/10.4209/aaqr.2012.03.0068

    Article  CAS  Google Scholar 

  15. Carvalho Rui M, dos Santos Jéssica A, Silva Jessee AS, do Prado Thiago G, da Fonseca Adriel Ferreira, Chaves Eduardo S, Frescura Vera LA (2015) Determination of metals in Brazilian soils by inductively coupled plasma mass spectrometry. Environ Monit Assessm 187(8):535.https://doi.org/10.1007/s10661-015-4769-y

  16. Chansuebsri S, Kraisitnitikul P, Wiriya W, Chantara S (2022) Fresh and aged PM2. 5 and their ion composition in rural and urban atmospheres of Northern Thailand in relation to source identification. Chemosphere 286:131803. https://doi.org/10.1016/j.chemosphere.2021.131803

  17. Chifflet S, Guyomarc'h L, Dominutti P, Heimbürger-Boavida LE, Angeletti B, Louvat P, Mari X (2023) Seasonal variations of metals and metalloids in atmospheric particulate matter (PM2.5) in the urban megacity Hanoi. Atmosp Pollut Res 101961. https://doi.org/10.1016/j.apr.2023.101961

  18. Chuersuwan N, Nimrat S, Lekphet S, Kerdkumrai T (2008) Levels and major sources of PM2.5 and PM10 in Bangkok Metropolitan Region. Environ Int 34(5):671–677. https://doi.org/10.1016/j.envint.2007.12.018

  19. Cohen DD, Crawford J, Stelcer E, Bac VT (2009) Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008. Atmosp Environ 44(3):320–328. https://doi.org/10.1016/j.atmosenv.2009.10.037

    Article  CAS  Google Scholar 

  20. Das R, Wang X, Itoh M, Shiodera S, Kuwata M (2019) Estimation of Metal emissions from tropical Peatland burning in Indonesia by controlled laboratory experiments. J Geophys 124:6583–6599. https://doi.org/10.1029/2019JD030364

    Article  CAS  Google Scholar 

  21. Dat ND, Nguyen VT, Vo TDH (2021) Contamination, source attribution, and potential health risks of heavy metals in street dust of a metropolitan area in Southern Vietnam. Environ Sci Pollut Res 28:50405–50419. https://doi.org/10.1007/s11356-021-14246-1

    Article  CAS  Google Scholar 

  22. Ding Y (2019) Heavy metal pollution and transboundary issues in ASEAN countries. Water Policy 21(5):1096–1106. https://doi.org/10.2166/wp.2019.003

  23. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47(10):4967–4983. https://doi.org/10.1021/es305071v

    Article  CAS  Google Scholar 

  24. Duan J, Tan J, Hao J, Chai F (2014) Size distribution, characteristics and sources of heavy metals in haze episod in Beijing. J Environ Sci 26(1):189–196. https://doi.org/10.1016/S1001-0742(13)60397-6

    Article  CAS  Google Scholar 

  25. Duong TT, Lee BK (2011) Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J Environ Manage 92(3):554–562

    Article  CAS  Google Scholar 

  26. Estoque RC, Murayama Y (2013) City Profile: Baguio Cities 30:240–251

    Google Scholar 

  27. Evers DC, Han YJ, Driscoll CT, Kamman NC, Goodale WM, Lambert KF, Holsen TM, Chen CY, Clair TA, Butler TJ (2007) Biological mercury hotspots in the Northeastern United States and Southeastern Canada. Bioscience 57:1–15. https://doi.org/10.1641/B570107

    Article  Google Scholar 

  28. Fujii Y, Mahmud M, Tohno S, Okuda T, Mizohata A (2016) A case study of PM2.5 characterization in Bangi, Selangor, Malaysia during the Southwest monsoon season. Aerosol and Air Quality Research 16(11):2685–2691

    Google Scholar 

  29. Galindo N, Yubero E, Clemente A, Nicolás JF, Navarro-Selma B, Crespo J (2019) Insights into the origin and evolution of carbonaceous aerosols in a mediterranean urban environment. Chemosphere 235 636-642. https://doi.org/10.1016/j.chemosphere.2019.06.202113

  30. Galvez MCD, Vallar E, Castilla RM, Mandia P, Branzuela R, Rempillo O, Orbecido AH, Beltran A, Ledesma N, Deocaris C, Morris V, Belo LP (2022) Principal component analysis of heavy metals in atmospheric aerosols from Meycauayan, Bulacan, Philippines. Preprints 2022020120. https://doi.org/10.20944/preprints202202.0120.v1

  31. Ghani FA, Redzuan NIN, Nasir NFM, Salamat M (2017) Review on ASEAN transboundary haze pollution agreement 2002: problems and solutions. J Humanit Lang Culture and Business 1(1):153–161

    Google Scholar 

  32. Gummeneni S, Yusup YB, Chavali M, Samadi SZ (2011) Source apportionment of particulate matter in the ambient air of Hyderabad city India. Atmosp Res 101(3):752–764. https://doi.org/10.1016/j.atmosres.2011.05.002

    Article  CAS  Google Scholar 

  33. Gustin MS, Hou D, Tack FMG. The term “heavy metal(s)”: History, current debate, and future use. Sci Total Environ 2021 Oct 789:147951. https://doi.org/10.1016/j.scitotenv.2021.147951

  34. Hai CD, Oanh NTK (2013) Effects of local, regional meteorology and emission sources on mass and compositions of particulate matter in Hanoi. Atmosp Environ 78:105–112. https://doi.org/10.1016/j.atmosenv.2012.05.006

    Article  CAS  Google Scholar 

  35. Harari R, Harari F, Gerhardsson L, Lundh T, Skerfving S, Strömberg U, Broberg K (2012) Exposure and toxic effects of elemental mercury in gold-mining activities in Ecuador. Toxicol Lett 213(1):75–82. https://doi.org/10.1016/j.toxlet.2011.09.006

    Article  CAS  Google Scholar 

  36. Hieu NT, Lee BK (2010) Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmos Res 98(2-4):526–537. https://doi.org/10.1016/j.atmosres.2010.08.019

  37. Hopke PK, Cohen DD, Begum BA, Biswas SK, Ni BF, Pandit GG, Santoso M, Chung YS, Davy P, Markwitz A, Waheed S, Siddique N, Santos FL, Pabroa PCB, Seneviratne MCS, Wimolwattanapun W, Bunprapob S, Vương TB, Hien PD, Markowicz A (2008) Urbanair quality in the Asian region. Sci Total Environ 404:103–112. https://doi.org/10.1016/j.scitotenv.2008.05.039

    Article  CAS  Google Scholar 

  38. Hsu CY, Chiang HC, Lin SL, Chen MJ, Lin TY, Chen YC (2016) Elemental characterization and source apportionment of PM10 and PM2. 5 in the western coastal area of central Taiwan. Sci Total Environ 541:1139–1150. https://doi.org/10.1016/j.scitotenv.2015.09.122

  39. Hu X, Zhuhong D, Yun Z, Sun Yuanyuan W, Jichun CY, Hongzhen L (2013) Size distribution and source apportionment of airborne metallic elements in Nanjing, China. Aerosol and Air Quality Res 13(6):1796–1806. https://doi.org/10.4209/aaqr.2012.11.0332

    Article  CAS  Google Scholar 

  40. Janta R, Chantara S (2017) Tree bark as bioindicator of metal accumulation from road traffic and air quality map: a case study of Chiang Mai, Thailand. Atmosp Pollut Res 8(5):956–967. https://doi.org/10.1016/j.apr.2017.03.010

    Article  Google Scholar 

  41. Ji X, Abakumov E, Chigray S, Saparova S, Polyakov V, Wang W et al (2021) Response of carbon and microbial properties to risk elements pollution in arctic soils. J Hazard Mater 408:124430. https://doi.org/10.1016/j.jhazmat.2020.124430

    Article  CAS  Google Scholar 

  42. Kayee J, Sompongchaiyakul P, Sanwlani N, Bureekul S, Wang X, Das R (2020) Metal concentrations and source apportionment of PM2.5 in Chiang Rai and Bangkok, Thailand during a biomass burning season. ACS Earth and Space Chem 4(7):1213–1226. https://doi.org/10.1021/acsearthspacechem.0c00140

  43. Khan MF et al (2016) Comprehensive assessment of PM2.5 physicochemical properties during the Southeast Asia dry season (southwest monsoon). J Geophys Res Atmos 121:14589–14611. https://doi.org/10.1002/2016JD025894

    Article  CAS  Google Scholar 

  44. Khan MF, Latif MT, Saw WH, Amil N, Nadzir MSM, Sahani M, Tahir NM, Chung JX (2016) Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment. Atmosp Chem Phys 16:597–617. https://doi.org/10.5194/acp-16-597-2016

    Article  CAS  Google Scholar 

  45. Kim KH, Mishra VK, Kang CH, Choi KC, Kim YJ, Kim DS, Youn YH, Lee JH (2005) The metallic composition of aerosols at three monitoring sites in Korea during winter 2002. Environ Monit Assessm 121:381–399. https://doi.org/10.1007/s10661-005-9136-y

    Article  CAS  Google Scholar 

  46. Kim Oanh NT, Upadhayay N, Zhuang YH et al (2006) Particulate air pollution in six cities: spatial and temporal distributions, and associated sources. Atmos Environ 40:3367–3380. https://doi.org/10.1016/j.atmosenv.2006.01.050

    Article  CAS  Google Scholar 

  47. Klaus Kästle (2013) Map of Southeast Asia Region. Nations Online Project. One World Nations Online. https://www.nationsonline.org/oneworld/map_of_southeast_asia.htm

  48. Koukoulakis KG, Chrysohou E, Kanellopoulos PG, Karavoltsos S, Katsouras G, Dassenakis M, Nikolelis D, Bakeas E (2019) Trace elements bound to airborne PM10 in a heavily industrialized site nearby Athens: seasonal patterns, emission sources, health implications. Atmosp Pollut Res 10(4):1347–1356. https://doi.org/10.1016/j.apr.2019.03.007

    Article  CAS  Google Scholar 

  49. Landis MS, Patrick Pancras J, Graney JR, White EM, Edgerton ES, Legge A, Percy KE (2017) Source apportionment of ambient fine and coarse particulate matter at the Fort McKay community site in the Athabasca Oil Sands Region, Alberta, Canada. Sci Total Environ 584–585:105–117. https://doi.org/10.1016/j.scitotenv.2017.01.110

    Article  CAS  Google Scholar 

  50. Lestiani DD, Santoso M, Trompetter WJ et al (2013) Determination of chemical elements in atmosphereatmospheree particulate matter collected at Lembang, Indonesia by particle induced X-ray emission. J Radioanal Nucl Chem 297:177–182. https://doi.org/10.1007/s10967-012-2348-z

    Article  CAS  Google Scholar 

  51. Li J, Michalski G, Olson EJ, Welp LR, Larrea Valdivia AE, Larico JR, Zapata FA, Paredes LM (2021) Geochemical characterization and heavy metal sources in PM10 in Arequipa, Peru. Atmosphere 12:641. https://doi.org/10.3390/atmos12050641

    Article  CAS  Google Scholar 

  52. Lian M, Wang J, Sun L, Xu Z, Tang J, Yan J (2019) Profiles and potential health risks of heavy metals in soil and crops from the watershed of Xi River in Northeast China. Ecotoxicol Environ Safety 169:442–448. https://doi.org/10.1016/j.ecoenv.2018.11.046

    Article  CAS  Google Scholar 

  53. Liu P, Hu W, Tian K, Huang B, Zhao Y, Wang X (2020) Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: a comparative study of China and South Korea. Environ Int 137:105519. https://doi.org/10.1016/j.envint.2020.105519

    Article  CAS  Google Scholar 

  54. Liu A, Ma Y, Gunawardena JM, Egodawatta P, Ayoko GA, Goonetilleke A (2018) Heavy metals transport pathways: The importance of atmospheric pollution contributing to stormwater pollution. Ecotoxicol Environ Safety 164:696–703

    Article  CAS  Google Scholar 

  55. Ma Y, Egodawatta P, McGree J, Liu A, Goonetilleke A (2016) Human health risk assessment of heavy metals in urban stormwater. Sci Total Environ 557:764–772. https://doi.org/10.1016/j.scitotenv.2016.03.067

    Article  CAS  Google Scholar 

  56. Makkonen U, Hellén H, Anttila P, Ferm M (2010) Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006. Sci Total Environ 408(3):644–651. https://doi.org/10.1016/j.scitotenv.2009.10.050

    Article  CAS  Google Scholar 

  57. Mamun AA, Cheng I, Zhang L, Dabek-Zlotorzynska E, Charland JP (2020) Overview of size distribution, concentration, and dry deposition of airborne particulate elements measured worldwide. Environ Rev 28(1):77–88. https://doi.org/10.1139/er-2019-0035

  58. Mason Robert P (2013) Trace metals in aquatic systems (Mason/Trace Metals in Aquatic Systems)||Metal(loid)s in the atmosphere and their inputs to surface waters 167–218. https://doi.org/10.1002/9781118274576.ch5

  59. Mbengue S, Alleman LY, Flament P (2014) Size-distributed metallic elements in submicronic and ultrafine atmospheric particles from urban and industrial areas in northern France. Atmospheric Res 135:35–47. https://doi.org/10.1016/j.atmosres.2013.08.010

    Article  CAS  Google Scholar 

  60. Miller AJ, Raduma DM, George LA, Fry JL (2019) Source apportionment of trace elements and black carbon in an urban industrial area (Portland, Oregon). Atmosp Pollut Res 10(3):784–794. https://doi.org/10.1016/j.apr.2018.12.006

    Article  CAS  Google Scholar 

  61. Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, Idris AM, Khandaker MU, Osman H, Alhumaydhi FA, Simal-Gandara J (2022) Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J King Saud Univer–Sci 34(3):101865. https://doi.org/10.1016/j.jksus.2022.101865

    Article  Google Scholar 

  62. Mulware SJ (2013) Trace elements and carcinogenicity: a subject in review. 3 Biotech 3:85–96. https://doi.org/10.1007/s13205-012-0072-6

  63. Nguyen LSP, Hien TT, Truong MT, Nguyen DTC, Sheu GR (2022) Atmospheric particulate-bound mercury (PBM10) in a Southeast Asia megacity: sources and health risk assessment. Chemosphere 307:135707. https://doi.org/10.1016/j.chemosphere.2022.135707

    Article  CAS  Google Scholar 

  64. Nguyen LSP, Huang HY, Lei TL, Bui TT, Wang SH, Chi KH, Sheu GR, Te LC, Ou-Yang CF, Lin NH (2020) Characterizing a landmark biomass-burning event and its implication for aging processes during long-range transport. Atmos Environ 241:117766. https://doi.org/10.1016/j.atmosenv.2020.117766

    Article  CAS  Google Scholar 

  65. Nguyen LSP, Pham TDH, Truong MT, Tran AN (2023) Characteristics of total gaseous mercury at a tropical megacity in Vietnam and influence of tropical cyclones. Atmos Pollut Res 14(8):101813. https://doi.org/10.1016/j.apr.2023.101813

    Article  CAS  Google Scholar 

  66. Nguyen LSP, Sheu GR (2019) Four-year measurements of wet mercury deposition at a tropical mountain site in Central Taiwan. Aerosol Air Qual Res 19:2043–2055. https://doi.org/10.4209/aaqr.2019.05.0250

    Article  CAS  Google Scholar 

  67. Nguyen LSP, Hien TT, (2024). Long-range atmospheric mercury transport from Across East Asia to a Suburban Coastal Area in Southern Vietnam. Bull Environ Contam Toxicol 112:14. https://doi.org/10.1007/s00128-023-03842-1

  68. Nour HE, El-Sorogy AS, Abd El-Wahab M, Mohamaden M, Al-Kahtany K (2019) Contamination and ecological risk assessment of heavy metals pollution from the Shalateen coastal sediments, Red Sea, Egypt. Marine Pollut Bullet 144:167–172. https://doi.org/10.1016/j.marpolbul.2019.04.056

    Article  CAS  Google Scholar 

  69. Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE (2018) A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use. Ambio 47(2):116–140. https://doi.org/10.1007/s13280-017-1004-9

    Article  CAS  Google Scholar 

  70. Paatero P, Tapper U (1994) Positive matrix factorization: a non‐negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126. https://doi.org/10.1002/env.3170050203

  71. Pabroa PCB, Racho JMD, Jagonoy AM, Valdez JDG, VII ATB, Yee JR, Cohen DD (2022) Characterization, source apportionment and associated health risk assessment of respirable atmosphere particulates in Metro Manila, Philippines. Atmosp Pollut Res 13(4):101379. https://doi.org/10.1016/j.apr.2022.101379

  72. Rahman SA, Hamzah MS, Elias MS, Salim NAA, Hashim A, Shukor S, Siong WB, Wood AK (2015) A long term study on characterization and source apportionment of particulate pollution in Klang Valley, Kuala Lumpur. Aerosol Atmosphere Qual Res 15:2291–2304. https://doi.org/10.4209/aaqr.2015.03.0188

    Article  CAS  Google Scholar 

  73. Rahman SA, Hamzah MS, Wood AK, Elias MS, Salim NAA, Sanuri E (2011) Sources apportionment of fine and coarse aerosol in Klang Valley, Kuala Lumpur using positive matrix factorization. Atmosp Pollut Res 2(2):197–206. https://doi.org/10.5094/APR.2011.025

    Article  CAS  Google Scholar 

  74. Ramírez O, De La Campa AS, Amato F, Catacolí RA, Rojas NY, de la Rosa J (2018) Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environ Pollut 233:142–155. https://doi.org/10.1016/j.envpol.2017.10.045

    Article  CAS  Google Scholar 

  75. Rauf AU, Mallongi A, Lee K, Daud A, Hatta M, Al Madhoun W, Astuti RDP (2021) Potentially toxic element levels in atmospheric particulates and health risk estimation around industrial areas of Maros Indonesia. Toxics 9:328. https://doi.org/10.3390/toxics9120328

    Article  CAS  Google Scholar 

  76. Sahu C, Basti S, Sahu SK (2021) Particulate collection potential of trees as a means to improve the air quality in urban areas in India. Environ Processes 8:377–395. https://doi.org/10.1007/s40710-021-00494-3

    Article  CAS  Google Scholar 

  77. Sakunkoo P, Thonglua T, Sangkham S, Jirapornkul C, Limmongkon Y, Daduang S, Pimonsree S (2022) Human health risk assessment of PM2.5-bound heavy metal of anthropogenic sources in the Khon Kaen Province of Northeast Thailand. Heliyon 8(6):e09572. https://doi.org/10.1016/j.heliyon.2022.e09572

  78. Samontha A, Waiyawat W, Shiowatana J, McLaren RG (2007) Atmospheric deposition of metals associated with air particulate matter: fractionation of particulate-bound metals using continuous-flow sequential extraction. Sci Asia 33:421–428. https://doi.org/10.2306/scienceasia1513-1874.2007.33.421

    Article  CAS  Google Scholar 

  79. Sandhya M et al (2019) Human health risk assessment of heavy metals in urban stormwater. Environ Biotechnol: For Sustain Future 103–125.https://doi.org/10.1016/j.scitotenv.2016.03.067

  80. Santoso M, Hopke PK, Hidayat A (2008) Sources identification of the atmospheric aerosol at urban and suburban sites in Indonesia by positive matrix factorization. Sci Total Environ 397(1–3):229–237. https://doi.org/10.1016/j.scitotenv.2008.01.057

    Article  CAS  Google Scholar 

  81. Santoso M, Lestiani DD, Markwitz A (2013) Characterization of airborne particulate matter collected at Jakarta roadside of an arterial road. J Radioanal Nucl Chem 297:165–169. https://doi.org/10.1007/s10967-012-2350-5

    Article  CAS  Google Scholar 

  82. Santoso M, Lestiani DD, Mukhtar R, Hamonangan E, Syafrul H, Markwitz A, Hopke PK (2011) Preliminary study of the sources of ambient air pollution in Serpong, Indonesia. Atmosp Pollut Res 2(2):190–196. https://doi.org/10.5094/APR.2011.024

    Article  CAS  Google Scholar 

  83. Sara YY, Rashid M, Chuah TG, Suhaimi M, Mohamed NN (2013) Characteristics of airborne PM2. 5 and Pm2. 5–10 in the urban environment of Kuala Lumpur. Adv Mater Res 620:502–510

    Article  Google Scholar 

  84. Sara YY, Rashid M, Chuah TG, Suhaimi M, Mohamed NN (2013) Characteristics pf AtmosphereAtmospheree PM2.5 And PM2.5-10 in the urban environment of Kuala Lumpur. Adv Mater Res 620:502–510. https://doi.org/10.4028/www.scientific.net/AMR.620.502

    Article  CAS  Google Scholar 

  85. Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32:809–822. https://doi.org/10.1016/S1352-2310(97)00293-8

  86. See SW, Balasubramanian R, Rianawati E, Karthikeyan S, Streets DG (2007) Characterization and source apportionment of particulate matter ≤ 2.5 μm in Sumatra, Indonesia, during a recent peat fire episode. Environ Sci Technol 41:3488–3494. https://doi.org/10.1021/es061943k

    Article  CAS  Google Scholar 

  87. See SW, Balasubramanian R, Wang W (2006) A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days. J Geophys Res 111:D10S08. https://doi.org/10.1029/2005JD006180

  88. Seinfeld J, Pandis S (1998) In: Atmospheric chemistry and physics. Wiley & Sons Inc, New York

    Google Scholar 

  89. Sentian J, Herman F, Yih CY, Wui JCH (2019) Long-term air pollution trend analysis in Malaysia. Int J Environ Impacts 2(4):309–324. https://doi.org/10.2495/EI-V2-N4-309-324

    Article  Google Scholar 

  90. Sheu GR, Lin NH, Lee CT, Wang JL, Chuang MT, Wang SH, Chi KH, Ou-Yang CF (2013) Distribution of atmospheric mercury in northern Southeast Asia and South China Sea during Dongsha experiment. Atmosp Environ 78:174–183. https://doi.org/10.1016/j.atmosenv.2012.07.002

    Article  CAS  Google Scholar 

  91. Sheu GR, Nguyen LSP, Truong MT, Lin DW (2019) Characteristics of atmospheric mercury at a suburban site in northern Taiwan and influence of trans-boundary haze events. Atmosp Environ 214:116827. https://doi.org/10.1016/j.atmosenv.2019.116827

    Article  CAS  Google Scholar 

  92. Soe PS, Kyaw WT, Arizono K, Ishibashi Y, Agusa T (2022) Mercury pollution from artisanal and small-scale gold mining in Myanmar and other Southeast Asian Countries. Int J Environ Res Public Health 19:6290. https://doi.org/10.3390/ijerph19106290

    Article  CAS  Google Scholar 

  93. Srithawirat T, Latif MT (2015) Concentration of selected heavy metals in the surface dust of residential buildings in Phitsanulok, Thailand. Environ Earth Sci 74:2701–2706. https://doi.org/10.1007/s12665-015-4291-0

    Article  CAS  Google Scholar 

  94. Srithawirat T, Latif MT, Sulaiman FR (2016) Indoor PM10 and its heavy metal composition at a roadside residential environment, Phitsanulok, Thailand. Atmósfera 29(4):311–322. https://doi.org/10.20937/ATM.2016.29.04.03

  95. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2016) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteor Soc 96:2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1

    Article  Google Scholar 

  96. Stohl A (1998) Computation, accuracy and applications of trajectories—a review and bibliography. Atmosp Environ 32(6):947–966. https://doi.org/10.1016/j.atmosres.2011.05.002

    Article  CAS  Google Scholar 

  97. Sulong NA, Latif MT, Khan MF, Amil N, Ashfold MJ, Wahab MIA, Sahani M (2017) Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia. Sci Total Environ 601–602:556–570. https://doi.org/10.1016/j.scitotenv.2017.05.153

    Article  CAS  Google Scholar 

  98. Tan SY, Praveena SM, Abidin EZ, Cheema MS (2018) Heavy metal quantification of classroom dust in school environment and its impacts on children health from Rawang (Malaysia). Environ Sci Pollut Res 25:34623–34635

    Article  CAS  Google Scholar 

  99. Titseesang T, Wood T, Panich N (2008) Leaves of orange jasmine (Murraya paniculata) as indicators of airborne heavy metal in Bangkok, Thailand. Annals of the New York Acad Sci 1140(1):282–289

    Article  CAS  Google Scholar 

  100. To H, Nguyen C, Huy D, Le Hoang A, David O, Grant F, Graham M, Alex B (2022) Soluble trace metals associated with atmospheric fine particulate matter in the two most populous cities in Vietnam. Atmosp Environ: X 15:100178. https://doi.org/10.1016/j.aeaoa.2022.100178

    Article  CAS  Google Scholar 

  101. Truong MT, Nguyen LSP, Hien TT, Pham TDH, Do TTL (2022) Source apportionment and risk estimation of heavy metals in PM10 at a Southern Vietnam megacity. Aerosol Atmosphere Qual Res 22:220094. https://doi.org/10.4209/aaqr.220094

  102. UN Environment (2019) Global Mercury Assessment (2018) UN environment programme. Chemicals and Health Branch Geneva, Switzerland

    Google Scholar 

  103. UNEP (2013) UNEP: global mercury assessment 2013: sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva, Switzerland

    Google Scholar 

  104. Di Vaio P, Magli E, Caliendo G, Corvino A, Fiorino F, Frecentese F, Saccone I, Santagada V, Severino B, Onorati G (2018) Heavy metals size distribution in PM10 and environmental-sanitary risk analysis in Acerra (Italy). Atmosphere 9:58. https://doi.org/10.3390/atmos9020058

    Article  CAS  Google Scholar 

  105. Wang Q, Bi XH, Wu JH (2013) Heavy metals in urban ambient PM10 and soil background in eight cities around China. Environ Monit Assess 185:1473–1482. https://doi.org/10.1007/s10661-012-2646-5

    Article  CAS  Google Scholar 

  106. Weatherbee DE (2014) International relations in Southeast Asia: the struggle for autonomy. Rowman & Littlefield

    Google Scholar 

  107. Wong CSC, Li XD, Zhang G, Qi SH, Peng XZ (2003) Atmospheric deposition of heavy metals in the Pearl River Delta. China 37(6):767–776. https://doi.org/10.1016/s1352-2310(02)00929-9

    Article  CAS  Google Scholar 

  108. World Bank (2022) World Bank national accounts data and OECD National Accounts data files. https://data.worldbank.org/indicator/NY.GDP.MKTP.CD

  109. Wu PC, Huang KF (2021) Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios. Sci Rep 11(1):7593. https://doi.org/10.1038/s41598-021-87051-y

  110. Yap CK, Chew WY, Tan SG (2012) Heavy metal concentrations in ceiling fan and roadside car park dust collected from residential colleges in Universiti Putra Malaysia, Serdang, Selangor. Pertanika J Trop Agric Sci 35(1):75–83

    Google Scholar 

  111. Ye L, Huang M, Zhong B, Wang X, Tu Q, Sun H, Wang C, Wu L, Chang M (2017) Wet and dry deposition fluxes of heavy metals in Pearl River Delta Region (China): Characteristics, ecological risk assessment and source apportionment. J Environ Sci. S1001074217325524. https://doi.org/10.1016/j.jes.2017.11.019

  112. Zajusz-Zubek E, Mainka A, Korban Z, Pastuszka JS (2015) Evaluation of highly mobile fraction of trace elements in PM10 collected in Upper Silesia (Poland): preliminary results. Atmos Pollut Res 6:961–968. https://doi.org/10.1016/j.apr.2015.05.001

    Article  Google Scholar 

  113. Zeng J, Han G, Yang K (2020) Assessment and sources of heavy metals in suspended particulate matter in a tropical catchment, northeast Thailand. J Cleaner Prod 265:121898. https://doi.org/10.1016/j.jclepro.2020.121898

  114. Zhang H, Fu X, Lin CJ, Shang L, Zhang Y, Feng X, Lin C (2016) Monsoon-facilitated characteristics and transport of atmospheric mercury at a high-altitude background site in southwestern China. Atmos Chem Phys 16(20):13131–13148. https://doi.org/10.5194/acp-16-13131-2016

    Article  CAS  Google Scholar 

  115. Zhu G, Noman MA, Narale DD, Feng W, Pujari L, Sun J (2020) Evaluation of ecosystem health and potential human health hazards in the Hangzhou Bay and Qiantang Estuary region through multiple assessment approaches. Environ Pollut 114791.https://doi.org/10.1016/j.envpol.2020.114791

Download references

Funding

The authors thank the Ho Chi Minh Department of Science and Technology for financial support in this research under Grant No. 39/2021/HĐ-QKHCN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ly Sy Phu Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, L.S.P., Do, T.T.L., Vo, T.G.H., Le, Q.H., Hien, T.T. (2024). The Source and Distribution of Heavy Metals in the Atmosphere Across Southeast Asia. In: Kumar, N. (eds) Heavy Metal Remediation. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-53688-5_1

Download citation

Publish with us

Policies and ethics