Skip to main content

Interpretable Prototype Discovery in Deep Learning-Based Time Series Classification

  • Chapter
  • First Online:
Integrated Systems: Data Driven Engineering
  • 101 Accesses

Abstract

Multivariable time series classification problems are increasingly prevalent and complex across various domains, such as biology and finance. While deep learning methods are an effective tool for these problems, they often lack interpretability. In this work, we propose a modular prototype learning framework for multivariable time series classification. In the first stage of our framework, we use contrastive learning to train a set of long short-term memory (LSTM) encoders for each variable. We then use prototype matching layers to learn representative prototypes for the variables that contribute to the classification task. The visualization of these prototypes offers an interpretation of the representative patterns within each variable. We validated our framework on a simulated dataset with embedded patterns. On this simulated dataset, we found that our model produces interpretations consistent with the embedded patterns. Overall, our findings pave the road for constructing interpretable deep learning-based models for time series classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schäfer, P., Leser, U. (2017). Multivariate time series classification with weasel+ muse. arXiv preprint arXiv:1711.11343

  2. Kwon, D.-H., Kim, J.-B., Heo, J.-S., Kim, C.-M., & H, Y-H. (2019). Time series classification of cryptocurrency price trend based on a recurrent lstm neural network. Journal of Information Processing Systems, 15(3), 694–706.

    Google Scholar 

  3. Xu, H., Duan, Z., Bai, Y., Huang, Y., Ren, A., Yu, Q., Zhang, Q., Wang, Y., Wang, X., Sun, Y., & Wang, W. (2020). Multivariate time series classification with hierarchical variational graph pooling

    Google Scholar 

  4. Azar, J., Makhoul, A., & Couturier, R. (2020). Using densenet for iot multivariate time series classification. In 2020 IEEE Symposium on Computers and Communications (ISCC), (pp. 1–6). IEEE

    Google Scholar 

  5. Gupta, A., Gupta, H.P., Biswas, B., & Dutta, T. (2020). A divide-and-conquer-based early classification approach for multivariate time series with different sampling rate components in iot. ACM Trans. Internet Things, 1(2).

    Google Scholar 

  6. Zhai, B., Perez-Pozuelo, I., Clifton, E.A.D., Palotti, J., Guan, Y. (2020). Making sense of sleep: Multimodal sleep stage classification in a large, diverse population using movement and cardiac sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 4(2).

    Google Scholar 

  7. Ayata, D., Yaslan, Y., Kamasak, M.E. (2020). Emotion recognition from multimodal physiological signals for emotion aware healthcare systems. Journal of Medical and Biological Engineering, 1–9.

    Google Scholar 

  8. Yixiang, D., Xue, W., Pengbo, Z., & Weihang, Z. (2017). Wearable biosensor network enabled multimodal daily-life emotion recognition employing reputation-driven imbalanced fuzzy classification. Measurement, 109, 408–424.

    Article  Google Scholar 

  9. Lee, J. H., Gamper, H., Tashev, I., Dong, S., Ma, S., Remaley, J., Holbery, J. D., & Yoon, S. H. (2020). Stress monitoring using multimodal bio-sensing headset. Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, CHI EA ’20 (pp. 1–7). Association for Computing Machinery: New York, NY, USA.

    Google Scholar 

  10. Ziegler, D. A., Simon, A. J., Gallen, C. L., Skinner, S., Janowich, J. R., Volponi, J. J., Rolle, C. E., Mishra, J., Kornfield, J., Anguera, J. A., et al. (2019). Closed-loop digital meditation improves sustained attention in young adults. Nature Human Behaviour, 3(7), 746–757.

    Article  Google Scholar 

  11. Mishra, J., Lowenstein, M., Campusano, R., Hu, Y., Diaz-Delgado, J., Ayyoub, J., Jain, R., & Gazzaley, A. (2021). Closed-loop neurofeedback of alpha synchrony during goal-directed attention. Journal of Neuroscience.

    Google Scholar 

  12. Wen, D., Liang, B., Zhou, Y., Chen, H., Jung, T.P. (2020). The current research of combining multi-modal brain-computer interfaces with virtual reality. IEEE Journal of Biomedical and Health Informatics, 1–1.

    Google Scholar 

  13. Jung, Y., Ik Yoon, Y. (2016). Monitoring senior wellness status using multimodal biosensors. In 2016 International Conference on Big Data and Smart Computing (BigComp) (pp. 435–438). IEEE.

    Google Scholar 

  14. Jung, Y., & Ik Yoon, Y. (2017). Multi-level assessment model for wellness service based on human mental stress level. Multimedia Tools and Applications, 76(9), 11305–11317.

    Article  Google Scholar 

  15. Zhang, D., Yao, L., Zhang, X., Wang, S., Chen, W., Boots, R., & Benatallah, B. (2018). Cascade and parallel convolutional recurrent neural networks on eeg-based intention recognition for brain computer interface. In Proceedings of the AAAI Conference on Artificial Intelligence, 32.

    Google Scholar 

  16. Abbasi-Asl, R., & Yu, B. (2017). Structural compression of convolutional neural networks. arXiv preprint arXiv:1705.07356.

  17. Abbasi-Asl, R., Chen, Y., Bloniarz, A., Oliver, M., Willmore, B.D.B, Gallant, J.L., & Yu, B. (2018). The deeptune framework for modeling and characterizing neurons in visual cortex area v4. bioRxiv, pp. 465534.

    Google Scholar 

  18. James Murdoch, W., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions, methods, and applications in interpretable machine learning. Proceedings of the National Academy of Sciences, 116(44), 22071–22080.

    Article  MathSciNet  Google Scholar 

  19. Gokce Baydogan, M., & Runger, G. (2015). Learning a symbolic representation for multivariate time series classification. Data Mining and Knowledge Discovery, 29(2), 400–422.

    Article  MathSciNet  Google Scholar 

  20. Grabocka, J., Wistuba, M., & Schmidt-Thieme, L. (2016). Fast classification of univariate and multivariate time series through shapelet discovery. Knowledge and Information Systems, 49(2), 429–454.

    Article  Google Scholar 

  21. Ghalwash, M. F., & Obradovic, Z. (2012). Early classification of multivariate temporal observations by extraction of interpretable shapelets. BMC Bioinformatics, 13(1), 1–12.

    Article  Google Scholar 

  22. Tang, W., Liu, L., & Long, G. (2020) Interpretable time-series classification on few-shot samples. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE.

    Google Scholar 

  23. Gee, A.H., Garcia-Olano, D., Ghosh, J., & Paydarfar, D. (2019) Explaining deep classification of time-series data with learned prototypes. arXiv preprint arXiv:1904.08935.

  24. Zhang, X., Gao, Y., Lin, J., & Lu, C-T. (2020). Tapnet: Multivariate time series classification with attentional prototypical network. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7–12, 2020 (pp. 6845–6852). AAAI Press.

    Google Scholar 

  25. Li, G., Choi, B., & Jianliang, X. (2021). Sourav S Bhowmick, Kwok-Pan Chun, and Grace LH Wong. Shapenet: A shapelet-neural network approach for multivariate time series classification. AAAI.

    Google Scholar 

  26. Hadsell, R., Chopra, S., & LeCun, Y. (2006) Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) (vol. 2, pp. 1735–1742). IEEE.

    Google Scholar 

  27. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, Sasank Chilamkurthy, & A., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 32 (pp. 8024–8035). Curran Associates Inc.

    Google Scholar 

  28. McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.

  29. Navani, D., Block, V., Cree, B., & Abbasi-Asl, R. (2023). Diurnal step count patterns in progressive multiple sclerosis (p3-3.011).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the feedback and comments provided by the members of the Neuroscape Center at UCSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Abbasi-Asl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosal, G.R., Abbasi-Asl, R. (2024). Interpretable Prototype Discovery in Deep Learning-Based Time Series Classification. In: Alam, MR., Fathi, M. (eds) Integrated Systems: Data Driven Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-53652-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53652-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53651-9

  • Online ISBN: 978-3-031-53652-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics