Skip to main content

Classification Supported by Community-Aware Node Features

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1142))

Included in the following conference series:

  • 813 Accesses

Abstract

A community structure that is often present in complex networks plays an important role not only in their formation but also shapes dynamics of these networks, affecting properties of their nodes. In this paper, we propose a family of community-aware node features and then investigate their properties. We show that they have high predictive power for classification tasks. We also verify that they contain information that cannot be recovered completely neither by classical node features nor by classical or structural node embeddings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The preprint of the longer version can be found on-line: https://math.torontomu.ca/~pralat/research.html.

  2. 2.

    https://github.com/sebkaz/BetaStar.git.

References

  1. Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Nat. Acad. Sci. 101(11), 3747–3752 (2004)

    Article  Google Scholar 

  2. Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 22(6), 725–730 (1950)

    Article  Google Scholar 

  3. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Aggarwal, C. (eds.) Social Network Data Analytics. Springer, Boston, MA. (2011). https://doi.org/10.1007/978-1-4419-8462-3_5

  4. Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 23, 191–201 (2001)

    Article  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  6. Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, vol. 2 (1990)

    Google Scholar 

  7. Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research. InterJournal, Complex Syst. 1695, 1–9 (2006). https://igraph.org

  8. Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., Yu, P.S.: Enhancing graph neural network-based fraud detectors against camouflaged fraudsters. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM 2020) (2020)

    Google Scholar 

  9. Fisher, A., Rudin, C., Dominici, F.: All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously (2019). https://arxiv.org/abs/1801.01489

  10. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  11. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977). http://www.jstor.org/stable/3033543

  12. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  13. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. CoRR, abs/1607.00653 (2016). http://arxiv.org/abs/1607.00653,arXiv:1607.00653

  14. Guimera, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433(7028), 895–900 (2005)

    Google Scholar 

  15. Helling, T.J., Scholtes, J.C., Takes, F.W.: A community-aware approach for identifying node anomalies in complex networks. In: International Workshop on Complex Networks & Their Applications (2018)

    Google Scholar 

  16. Helling, T.J., Scholtes, J.C., Takes, F.W.: A community-aware approach for identifying node anomalies in complex networks. In: Aiello, L.M., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L.M. (eds.) COMPLEX NETWORKS 2018. SCI, vol. 812, pp. 244–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05411-3_20

    Chapter  Google Scholar 

  17. Kamiński, B., Prałat, P., Théberge, F.: Mining Complex Networks. Chapman and Hall/CRC (2021)

    Google Scholar 

  18. Kamiński, B., Prałat, P., Théberge, F.: Artificial benchmark for community detection with outliers (ABCD+o). Appl. Netw. Sci. 8(1), 25 (2023)

    Article  Google Scholar 

  19. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  Google Scholar 

  20. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1269–1278 (2019)

    Google Scholar 

  21. Matke, C., Medjroubi, W., Kleinhans, D.: SciGRID - An Open Source Reference Model for the European Transmission Network (v0.2) (2016). http://www.scigrid.de

  22. Ribeiro, L.F.R., Saverese, P.H.P., Figueiredo, D.R.: Struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 385–394 (2017). https://doi.org/10.1145/3097983.3098061

  23. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding. J. Complex Netw. 9(2), cnab014 (2021)

    Google Scholar 

  24. Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: birds of a feather, from statistical descriptors to parametric models. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM 2020), pp. 1325–1334. ACM (2020)

    Google Scholar 

  25. Traag, V.A., Waltman, L., Van Eck, N.J.: From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9(1), 5233 (2019)

    Google Scholar 

  26. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1988)

    Article  Google Scholar 

  27. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983 (2018)

    Google Scholar 

Download references

Acknowledgements

BK and SZ have been supported by the Polish National Agency for Academic Exchange under the Strategic Partnerships programme, grant number BPI/PST/2021/1/00069/U/00001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogumił Kamiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamiński, B., Prałat, P., Théberge, F., Zając, S. (2024). Classification Supported by Community-Aware Node Features. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-031-53499-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53499-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53498-0

  • Online ISBN: 978-3-031-53499-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics