Skip to main content

Sustainable Technologies Applied to Asphalt Paving by Reusing Polymeric Waste

  • Chapter
  • First Online:
Sustainable Spaces in Arid and Semiarid Zones of Mexico

Abstract

Countries of the Global South such as Mexico need to modernize their transport infrastructure to be increasingly competitive internationally. A resilient infrastructure promotes sustainable industrialization and encourages innovation. Two key objectives were identified: To develop reliable, sustainable, resilient, and quality infrastructure, including regional and cross-border infrastructure, and to support economic development and human well-being. To modernize the infrastructure and reconvert the construction industry, the adoption of clean and environmentally friendly technologies and industrial processes is proposed. In arid and semi-arid zones, the intense and prolonged periods of drought and erratic rainfall, as well as strong temperature variations, alter the road durability and resistance, and their maintenance requirements. That is why the asphalt concrete used in these areas must consider durability, resistance to cracking, low road noise, and low environmental impact. An area of opportunity that stands out here is the recycling of materials as an option to reduce the consumption of virgin materials, which impacts costs and maintenance. In this work, the properties of asphalt concrete modified with recycled polymeric waste were reviewed. A compilation of information is included that contemplates asphalt and concrete evaluation strategies through conceptual frameworks of sustainability, environmental impact, and circular economy for new road networks. It is concluded that recycled polymeric materials are a sustainable alternative to asphalt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adday FA, Awad A, Alsaleh F (2021) Low-cost pavement by using solid waste, recycled aggregates, crumb rubber, and waste plastic for rural road. Int J Geomate 20:18–23

    Article  Google Scholar 

  • Alqahtani FK (2022) Technical assessment of Green lightweight concrete containing manufactured plastic aggregates. J Build Eng 50:104169

    Article  Google Scholar 

  • Anwar MK, Shah SAR, Alhazmi H (2021) Recycling and utilization of polymers for road construction projects: an application of the circular economy concept. Polymers 13(8):1330

    Article  CAS  Google Scholar 

  • APM (2017) Plastics—the facts 2017. An analysis of European plastics production, demand and waste data. Association of Plastics Manufacturers. https://plasticseurope.org/wp-content/uploads/2021/10/2017-Plastics-the-facts.pdf. Accessed 1 Sept 2022

  • Appiah JK, Berk-Boatenga VN, Tagbor TA (2017) Use of waste plastic materials for road construction in Ghana. Case Stud Constr Mater 6:1–7

    Google Scholar 

  • Arroyo P, Herrera R, Salazar L, Giménez Z, Martínez J, Calahorra M (2018) Un nuevo enfoque para la integración de factores ambientales, sociales y económicos para evaluar mezclas asfálticas con y sin neumáticos de desecho. Rev Ing. Constr 33(3):301–314

    Article  CAS  Google Scholar 

  • Audy R, Enfrin M, Boom YJ, Giustozzi F (2022) Selection of recycled waste plastic for incorporation in sustainable asphalt pavements: a novel multi-criteria screening tool based on 31 sources of plastic. Sci Total Environ 829:154604

    Article  CAS  Google Scholar 

  • Bilema M, Aman M, Hassanc N, Halould M, Modibbo S (2021) Influence of crumb rubber size particles on moisture damage and strength of the hot mix asphalt. Mater Today: Proc 42:2387–2391

    CAS  Google Scholar 

  • Biswas A, Goel A, Potnis S (2020) Performance comparison of waste plastic modified versus conventional bituminous roads in Pune city: a case study. Case Stud Constr Mater 13:e00411

    Google Scholar 

  • Chen Z, Zhang H, Duan H, Shi C (2021) Improvement of thermal and optical responses of short-term aged thermochromic asphalt binder by warm-mix asphalt technology. J Clean Prod 279:123675

    Article  CAS  Google Scholar 

  • Cheng X, Liu Y, Ren W, Huang K (2019) Performance evaluation of asphalt rubber mixture with additives. Materials 12(8):1200

    Article  CAS  Google Scholar 

  • Ciro E, Parra J, Zapata M, Murillo EA (2015) Efecto de caucho reciclado en las propiedades de mezclas de caucho reciclado y polipropileno reciclado. Ing Cienc 11(22):173–188

    Article  CAS  Google Scholar 

  • Colbert BW, You Z (2012) Properties of modified asphalt binders blended with electronic waste powders. J Mater Civ Eng 24(10):1261–1267

    Article  CAS  Google Scholar 

  • Dalhat MA, Al-Abdul-Wahhab HI, Al-Adham K (2019) Recycled plastic waste asphalt concrete via mineral aggregate substitution and binder modification. J Mater Civ Eng 31(8):04019134

    Google Scholar 

  • Dow Corporate (2019) Dow completes roads improved with recycled plastic. https://corporate.dow.com/en-us/news/press-releases/dow-completes-roads-improved-with-recycled-plastic.html. Accessed 12 Aug 2022

  • Durham County Council (n.d.) Road resurfacing programme. https://www.durham.gov.uk/article/18391/Road-resurfacing-programme. Accessed 21 June 2022

  • ERF-IRF (2009) The future of transport: strategic road infrastructure priorities–beyond 2010. European Road Federation and International Road Federation Brussels Programme Centre

    Google Scholar 

  • Figueroa-Infante AS, Fonseca-Santanilla E (2015) Estudio de material reciclado para reparar fisuras y su aplicación en un pavimento en Bogotá. Épsilon 24:89–121

    Google Scholar 

  • Han L, Zheng M, Wang C (2016) Current status and development of terminal blend tyre rubber modified asphalt. Constr Build Mater 128:399–409

    Article  Google Scholar 

  • Han S, Wei H, Han L, Li Q (2019) Durability and electrical conductivity of carbon fiber cloth/ethylene propylene diene monomer rubber composite for active deicing and snow melting. Polymers 11(12):2051

    Article  CAS  Google Scholar 

  • Hyun HK, Moon-Sup L, Soon-Jae L (2019) Performance evaluation of polymer modified asphalt (PMA) binders containing ground tire rubber (GTR). Int J Pavement Res Technol 12:215–222

    Article  Google Scholar 

  • IRF (2009) Innovative practices for greener roads. International Road Federation. https://es.calameo.com/read/000046992065d5df0cc24. Accessed 12 July 2022

  • ISO 14001 (2015) Environmental management systems-Requirements with guidance for use. International Standardization Organization

    Google Scholar 

  • Jamshidi A, White G (2020) Evaluation of performance and challenges of use of waste materials in pavement construction: a critical review. Appl Sci 10(1):226

    Article  CAS  Google Scholar 

  • Kakar MR, Mikhailenko P, Piao Z, Bueno M, Poulikakos L (2021) Analysis of waste polyethylene (PE) and its by-products in asphalt binder. Constr Build Mater 280:122492

    Article  CAS  Google Scholar 

  • Khaled TT, Aboud GM, Al-Hamd RKhS (2020) Study the effect of adding crumb rubber on the performance of hot mix asphalt. IOP Conf Ser: Mater Sci Eng 737:012129

    Article  CAS  Google Scholar 

  • Kumar HV, Rahul BG (2020) Performance and cost analysis of modified bitumen binder for flexible pavement. IOP Conf Ser: Mater Sci Eng 912:062050

    Article  CAS  Google Scholar 

  • Li HP, Zhao H, Liao KJ, Li YG, Li XQ (2012) A study on the preparation and storage stability of modified emulsified asphalt. Pet Sci Technol 30(7):699–708

    Article  CAS  Google Scholar 

  • Li R, Leng Z, Zhang Y, Ma X (2019) Preparation and characterization of waterborne epoxy modified bitumen emulsion as a potential high-performance cold binder. J Clean Prod 235:1265–1275

    Article  CAS  Google Scholar 

  • Liang M, Xin X, Fan W, Wang H, Jiang H, Zhang J, Yao Z (2019) Phase behavior and hot storage characteristics of asphalt modified with various polyethylene: experimental and numerical characterizations. Constr Build Mater 203:608–620

    Article  CAS  Google Scholar 

  • Liang Y, Jones D, Harvey JT (2020) Laboratory evaluation of rubberized binder and mix containing a low content of devulcanized rubber modifier. Transp Res Rec 2674(11):53–63

    Article  Google Scholar 

  • Loprencipe G, Cantisani G (2013) Unified analysis of road pavement profiles for evaluation of surface characteristics. Mod Appl Sci 7(8):1–14

    Article  Google Scholar 

  • Lozano DA, Molina-Gómez F, Ruge JC, Moreno-Anselmi LA, Bastidas-Martínez JG (2020) Asphalts and modified dense asphalt mixtures with rubber of military boots. DYNA 87(212):120–128

    Article  CAS  Google Scholar 

  • Luo Y, Zhang K, Xie X, Yao X (2019) Performance evaluation and material optimization of Micro-surfacing based on cracking and rutting resistance. Constr Build Mater 206:193–200

    Article  CAS  Google Scholar 

  • Lv S, Tan L, Peng X, Hu L, Borges-Cabrera M (2021) Experimental investigation on the performance of bone glue and crumb rubber compound modified asphalt. Constr Build Mater 305:124734

    Article  CAS  Google Scholar 

  • Mazzotta F, Tataranni P, Simone A, Fornai D, Airey G, Sangiorgi C (2020) Multi-scale rheo-mechanical study of sma mixtures containing fine crumb rubber in a new dry-hybrid technology. Appl Sci 10(11):3887

    Article  CAS  Google Scholar 

  • Mendoza-Sánchez JF (2014) Criterios de Sustentabilidad para carreteras en México. Instituto Mexicano del Transporte, pp149. https://imt.mx/archivos/Publicaciones/PublicacionTecnica/pt392.pdf. Accessed 3 Sept 2022

  • Miller TD, Bahia HU (2010) Establishing a framework for analyzing asphalt pavement sustainability. Int J Pavement Res Technol 3(3):149–155

    Google Scholar 

  • Moussa GS, Abdel-Raheem A, Abdel-Wahed T (2021) Effect of nanoclay particles on the performance of high-density polyethylene-modified asphalt concrete mixture. Polymers 13(3):434

    Article  CAS  Google Scholar 

  • Nanjegowda VH, Biligiri KP (2020) Recyclability of rubber in asphalt roadway systems: a review of applied research and advancement in technology. Resour Conserv Recycl 155:104655

    Article  Google Scholar 

  • News24 (2019) First ‘plastic’ road officially opened. https://www.news24.com/news24/community-newspaper/kouga-express/first-plastic-road-officially-opened-20191218. Accessed 9 Aug 2022

  • Noor A, Ur-Rehman MA (2022) A mini-review on the use of plastic waste as a modifier of the bituminous mix for flexible pavement. Clean Mater 4:100059

    Article  CAS  Google Scholar 

  • Orbia (2021) Plasticroad and orbia inaugurate the first plasticroad pilot in Latin America in Mexico City’s Chapultepec forest. https://www.orbia.com/this-is-orbia/news-and-stories/plasticroad-in-mexico-city-en/. Accessed 25 July 2022

  • Ranieri M, Costa L, Oliveira JRM, Silva HMRD, Celauro C (2017) Asphalt surface mixtures with improved performance using waste polymers via dry and wet processes. J Mater Civ Eng 29(10):04017169–04017171

    Article  Google Scholar 

  • Reza-Pouranian M, Notani MA, Tabesh MT, Nazeri B, Shishehbor M (2020) Rheological and environmental characteristics of crumb rubber asphalt binders containing non-foaming warm mix asphalt additives. Constr Build Mater 238:117707

    Article  Google Scholar 

  • Rodríguez-Fernández I, Cavalli MC, Poulikakos L, Bueno M (2020) Recyclability of asphalt mixtures with crumb rubber incorporated by dry process: a laboratory investigation. Materials 13(12):2870

    Article  Google Scholar 

  • Sala S, Ciuffo B, Nijkamp P (2015) A systemic framework for sustainability assessment. Ecol Econ 119:314–325

    Article  Google Scholar 

  • Santero NJ, Masanet E, Horvath A (2011) Life-cycle assessment of pavements. Part I: Critical review. Resour Conserv Recycl 55(9–10):801–809

    Google Scholar 

  • Sheng X, Wang M, Xu T, Chen J (2018) Preparation, properties and modification mechanism of polyurethane modified emulsified asphalt. Constr Build Mater 189:375–383

    Article  CAS  Google Scholar 

  • Trimbakwala A (2017) Plastic roads use of waste plastic in road construction. IJSRP 7(4):137–139

    Google Scholar 

  • UN (2022) The sustainable development goals report. https://desapublications.un.org/publications/sustainable-development-goals-report-2022. Accessed 6 May 2023

  • Unsiwilai S, Sangpetngam B (2018) Influences of particle size and content on deformation resistance of crumb rubber modified asphalt using dry process mix. Eng J 22(3):181–193

    Article  CAS  Google Scholar 

  • Vila-Romano R, Jaramillo-Briceno JG (2018) Incidence of the use of polymers as modifiers of the asphalt. Rev Lasallista Investig 15(2):315–326

    Google Scholar 

  • Wagner S, Schlummer M (2020) Legacy additives in a circular economy of plastics: current dilemma, policy analysis, and emerging countermeasures. Resour Conserv Recycl 158:104800

    Article  Google Scholar 

  • Wei H, Ma Z, He X, Han S, Jiang B (2022) Structural response analysis of conductive ethylene–propylene–diene monomer rubber composite pavement under validated temperature field. Constr Build Mater 328:127094

    Article  CAS  Google Scholar 

  • Wu S, Montalvo L (2021) Repurposing waste plastics into cleaner asphalt pavement materials: a critical literature review. J Cleaner Prod 280(Part2):124355

    Article  CAS  Google Scholar 

  • Yang J, Zhang Z, Fang Y, Luo Y (2020) Performance characterization of waterborne epoxy resin and styrene-butadiene rubber latex composite modified asphalt emulsion (WESAE). Coatings 10(4):352

    Article  CAS  Google Scholar 

  • Yao H, Zhou S, Wang S (2016) Structural evolution of recycled tire rubber in asphalt. J Appl Polym Sci 133:42954

    Article  Google Scholar 

  • Yao X, Tan L, Xu T (2022) Preparation, properties and compound modification mechanism of waterborne epoxy resin/styrene butadiene rubber latex modified emulsified asphalt. Constr Build Mater 318:126178

    Article  CAS  Google Scholar 

  • Yung-Vargas YW, Córdoba-Maquilón JE, Rondón-Quintana HA (2016) Evaluation of abrasión of a modified drainage mixture with rubber waste crushed (GCR). Tecnura 20(50):106–118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Erick Castañeda-Robles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castañeda-Robles, I.E., Olguín-Coca, F.J., Gaona-Tiburcio, C. (2024). Sustainable Technologies Applied to Asphalt Paving by Reusing Polymeric Waste. In: Lizárraga-Mendiola, L., Bigurra-Alzati, C.A., Vázquez-Rodríguez, G.A. (eds) Sustainable Spaces in Arid and Semiarid Zones of Mexico. The Latin American Studies Book Series. Springer, Cham. https://doi.org/10.1007/978-3-031-53418-8_7

Download citation

Publish with us

Policies and ethics