Skip to main content

Industrial, Domestic, and Agricultural Use of Geothermal Water

  • Chapter
  • First Online:
Geothermal Fields of India

Abstract

The integration of renewable energy sources like geothermal with the food production sectors could reduce dependence on fossil fuels and contribute to achieving Sustainable Development Goals (SDGs), specially focusing on food security and climate protection. Geothermal water can generate electricity and serve as a water supply, providing reliable access to clean water without impacting the environment. Despite its potential, geothermal energy is undervalued, making it underutilized in industrial processes. This chapter evaluates potential geothermal applications in the field of agriculture and agro-food sectors, including processing, cooking, oil extraction, drying, textile washing, pulp and paper processing, fuel generation, space heating, leather production, cooling, therapeutic balneology, and snow melting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achieng, O. P. F. (2007). Environmental impact assessment general procedures. In Proceedings in short course IV on exploration for geothermal resources organized by UNU-GTP, November 1–22, pp. 1–16.

    Google Scholar 

  • Agishi, Y. (2001). Clinical usefulness of long-term thermohydrotherapy (balneotherapy), thermotherapy for neoplasia, inflammation, and pain (pp. 486–494). Springer. ISBN: 978-4-431-67037-7.

    Google Scholar 

  • Baba, A., & Chandrasekharam, D. (2022). Geothermal resources for sustainable development: A case study. International Journal of Energy Research, 46(14), 20501–20518.

    Article  Google Scholar 

  • Bennett, G., & Walraevens, K. (2023). Assessment of possibility of finding geothermal energy resources around Mount Meru in northern Tanzania using classical solute geothermometry. Groundwater for Sustainable Development, Elsevier, 21, 100926.

    Article  Google Scholar 

  • Boekstein, M. S. (2014). Healing waters: Balneological classification of thermal springs in South Africa. African Journal for Physical Activity and Health Journals, 20(2), 557–568.

    Google Scholar 

  • Cano, N. A., Céspedes, S., Redondo, J., Foo, G., Jaramillo, D., Martinez, D., Gutiérrez, M., Pataquiba, J., Rojas, J., Cortés, F. B., & Franco, C. A. (2022). Power from geothermal resources as a co-product of the oil and gas industry: A review. ACS Omega, 7(45), 40603–40624.

    Article  CAS  Google Scholar 

  • Çelik, D., Meral, M. E., & Waseem, M. (2022). Investigation and analysis of effective approaches, opportunities, bottlenecks and future potential capabilities for digitalization of energy systems and sustainable development goals. Electric Power Systems Research, 211(13), 108251.

    Article  Google Scholar 

  • Chandrasekharam, D. (2001). Use of geothermal energy for food processing-Indian status. Geo-Heat Center Quarterly Bulletin, 22(4), 8–11.

    Google Scholar 

  • Chou, S. K., & Chua, K. J. (2001). New hybrid drying technologies for heat sensitive foodstuffs. Trends in Food Science and Technology, 12(10), 359–369.

    Article  Google Scholar 

  • Dickinson, J. S., Buik, N., Matthews, M. C., & Snijders, A. (2009). Aquifer thermal energy storage: Theoretical and operational analysis. Geotechnique, 59(3), 249–260.

    Article  Google Scholar 

  • Dinçer, I., & Rosen M. A. (2010). Thermal energy storage: Systems and applications (2nd ed., pp. 1–624). Wiely. ISBN: 978-0-470-97073-7.

    Google Scholar 

  • Duijff, R., Bloemendal, M., & Bakker, M. (2023). Interaction effects between aquifer thermal energy storage systems. Groundwater, 61(2), 173–182.

    Article  CAS  Google Scholar 

  • Fridleifsson, I. B., Bertani, R., Huenges, E., Lund, J. W., Ragnarsson, A., & Rybach, L. (2009). The possible role and contribution of geothermal energy to the mitigation of climate change. Proceedings in IPCC Geothermal, 11, 75–118.

    Google Scholar 

  • Fytikas, M., Andritsos, N., Karydakis G., Kolios N., Mendrinos D., & Papachristou, M. (2002). Geothermal exploration and development activities in Greece during 1995–1999. In Proceedings in world geothermal congress, 2000, Kyushu-Tohoku, Japan, May 28–June 10, 2000, pp. 199–208.

    Google Scholar 

  • Gehlin, S. (2016). Borehole thermal energy storage. Advances in Ground-Source Heat Pump Systems. ISBN: 978-0-08-100311-4.

    Google Scholar 

  • Gielen, D., Saygin, D., & Wagner, N. (2015). REMAP 2030 renewable energy prospects for Ukraine (pp.1–53). International Renewable Energy Agency.

    Google Scholar 

  • Green, S., McLennan, J., Panja, P., Kitz, K., Allis, R., & Moore, J. (2021). Geothermal battery energy storage. Renewable Energy, 164, 777–790.

    Article  Google Scholar 

  • Gutenbrunner, C., Bender, T., Cantista, P., & Karagulle, A. (2010). A proposal for a worldwide definition of health resort medicine, balneology, medical hydrology and climatology. Springer, 54(5), 495–507.

    Google Scholar 

  • Jonker, C., & Oliver, J. (2012). Balneological use of thermal water in South Africa. Universidad Complutense de Madrid, 06, 453.

    Google Scholar 

  • Kallesøe, A. J., Vangkilde-Pedersen, T., Nielsen, J. E., Bakema, G., Egermann, P., Maragna, C., Hahn, F., Guglielmetti, L., & Koornneef, J. (2021). HEATSTORE-underground thermal energy storage (UTES)-state of the art, example cases and lessons learned. In Proceedings world geothermal congress 2020+1, October, 1–9, pp. 1–130.

    Google Scholar 

  • KieÅ‚czawa, B. (2018). Balneological use of geothermal springs in selected regions of the world. In Geothermal water management (1st ed., pp. 1–46). CRC Press. ISBN: 9781315734972.

    Google Scholar 

  • Lund, J., Bertani, R., & Boyd, T. L. (2015). Worldwide geothermal energy utilization 2015. GRC Transactions, 39, 79–92.

    Google Scholar 

  • Lund, J. W., Freeston, D. H., & Boyd, T. L. (2002). World-wide direct uses of geothermal energy 2000. Fuel and Energy Abstracts, 43(2), 122.

    Article  Google Scholar 

  • Lund, J. W., Freeston, D. H., & Boyd, T. L. (2011). Direct utilization of geothermal energy 2010 worldwide review. Geothermics, 40(3), 159–180.

    Article  Google Scholar 

  • Lund, J. W., & Toth, A. N. (2021). Direct utilization of geothermal energy 2020 worldwide review. Geothermics, 90, 1–39.

    Article  Google Scholar 

  • Peroni, A., Gisondi, P., Zanoni, M., & Girolomoni, G. (2008). Balneotherapy for chronic plaque psoriasis at Comano spa in Trentino, Italy. Dermatologic Therapy, 21, 1–8. PMID: 18727814.

    Google Scholar 

  • Popovska-Vasilevska, S. (2003). Drying agricultural products with geothermal energy (pp. 1–11). Standford School of Earth, Energy and Environmental Sciences.

    Google Scholar 

  • Prajapati, M., Shah, M., & Soni, B. (2023). Performance evaluation of a novel geothermal energy integrated single effect evaporator desalination with software simulation. Journal of Cleaner Production, 407, 137087.

    Article  Google Scholar 

  • Prajapati, M., Shah, M., Soni, B., Parikh, S., Sircar, A., Balchandani, S., Thakore, S., & Tala, M. (2021). Geothermal-solar integrated groundwater desalination system: Current status and future perspective. Groundwater for Sustainable Development, 12, 100506.

    Article  Google Scholar 

  • Robinson, L., Schulz, J., Wiborg, Ø. N., & Johnston, E. (2021). The COVID connection: Pandemic anxiety, COVID-19 comprehension, and digital confidence. American Behavioral Scientist, 65(12), 1721–1746.

    Article  Google Scholar 

  • Sammel, E. A. (1980). Hydrogeologic appraisal of the Klamath Falls geothermal area, Oregon. In Geohydrology of geothermal systems (pp. G01-G45).

    Google Scholar 

  • Singh, H. K., Singh, B., Singh, H. K., Chandrasekharam, D., Trupti, G., Mohite, P., Singh, B., Varun, C., & Sinha, S. K. (2016). Potential geothermal energy resources of India: A review (Vol. 3(3–4), pp. 80–91). Springer.

    Google Scholar 

  • Stober, I., & Bucher, K. (2021). Geothermal energy: From theoretical models to exploration and development. Geothermal Energy, 33–42. ISBN: 978-3-030-71684-4.

    Google Scholar 

  • Tomaszewska, B., Akkurt, G. G., Kaczmarczyk, M., Bujakowski, W., Keles, N., Jarma, Y. A., Baba, A., Bryjak, M., & Kabay, N. (2021). Utilization of renewable energy sources in desalination of geothermal water for agriculture. Desalination, 513, 115151.

    Article  CAS  Google Scholar 

  • Velis, M., Conti, K. I., & Biermann, F. (2017). Groundwater and human development: Synergies and trade-offs within the context of the sustainable development goals. Sustainability Science, 12(6), 1007–1017.

    Article  Google Scholar 

  • Yavuzturk, C., & Chiasson, A. D. (2002). Performance analysis of U-tube, concentric tube, and standing column well ground heat exchangers using a system simulation approach. ASHRAE Transactions, 108, 925–938.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kriti Yadav .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, K., Sircar, A., Shah, M. (2024). Industrial, Domestic, and Agricultural Use of Geothermal Water. In: Geothermal Fields of India. Springer, Cham. https://doi.org/10.1007/978-3-031-53364-8_7

Download citation

Publish with us

Policies and ethics