Skip to main content

Sustainable Power Generation Cycles Using Geothermal Water

  • Chapter
  • First Online:
Geothermal Fields of India

Abstract

One of the major uses of geothermal water is power generation cycles. This chapter talks about the types of geothermal power generation cycles. This chapter talks about the types of steam generation cycles like flash steam, single flash steam cycle, double flash steam cycle and dry steam. Another most popular technique for low enthalpy geothermal energy is Binary cycles. This method has benefits like it optimises energy transfer by efficiently exchanging heat with the geothermal fluid through a heat exchanger. One of the other useful cycles is Kalina cycle. In thermodynamics, the Carnot cycle is recognised for its exceptional efficiency, which is characterised by zero heat losses. It functions as a zero-loss heat engine and consists of four reversible processes, including two isothermal and two adiabatic phases. The century-old Rankine cycle, which generates electricity by using water as the working fluid, closely resembles the Carnot cycle in practise. The chapter is concluded by the CO2 cycle along with regeneration and combined cycles for power generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abu-Rayash, A., & Dincer, I. (2019). Sustainability assessment of energy systems: A novel integrated model. Journal of Cleaner Production, 212, 1098–1116.

    Article  Google Scholar 

  • Agemar, T., Weber, J., & Schulz, R. (2014). Deep geothermal energy production in Germany. Energies, 7(7), 4397–4416.

    Article  Google Scholar 

  • Ahmadi, A., Assad, M. E. H., Jamali, D. H., Kumar, R., Li, Z. X., Salameh, T., & Ehyaei, M. A. (2020). Applications of geothermal organic Rankine Cycle for electricity production. Journal of Cleaner Production, 274, 122950.

    Article  Google Scholar 

  • Baccioli, A., Antonelli, M., & Desideri, U. (2017). Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery. Applied Energy, 199, 69–87.

    Article  CAS  Google Scholar 

  • Bonalumi, D., Bombarda, P. A., & Invernizzi, C. M. (2017). Zero emission geothermal flash power plant. Energy Procedia, 126, 698–705.

    Article  Google Scholar 

  • Boyle, G. (1996). Renewable energy: Power for a sustainable future (no title).

    Google Scholar 

  • Bravi, M., & Basosi, R. (2014). Environmental impact of electricity from selected geothermal power plants in Italy. Journal of Cleaner Production, 66, 301–308.

    Article  CAS  Google Scholar 

  • Brender, N., & Kuhn, D. (2018). Feasibility study for a medium-enthalpy geothermal power plant in Rosario de la Frontera, Salta, Argentina.

    Google Scholar 

  • Bruhn, M., Erbas, K., & Huenges, E. (1999). Efficient geothermal-fossil hybrid electricity generation: Geothermal feedwater preheating in conventional power plants. Bulletin d’Hydrogdoiogie, 17, 403–413.

    Google Scholar 

  • Cao, Y., & Ehyaei, M. A. (2021). Energy, exergy, exergoenvironmental, and economic assessments of the multigeneration system powered by geothermal energy. Journal of Cleaner Production, 313, 127823.

    Article  CAS  Google Scholar 

  • Dahlan, M. A., Pratama, H. B., & Saptadji, N. M. (2020). Pre-feasibility study of condensing wellhead generating unit utilization in partially vapor dominated system. IOP Conference Series: Earth and Environmental Science, 417(1), 012021.

    Google Scholar 

  • Dincer, I., & Bicer, Y. (2020). Integration of conventional energy systems for multigeneration. In Integrated energy systems for multigeneration (pp. 143–221).

    Google Scholar 

  • DiPippo, R. (2012a). Geothermal power plants: Principles, applications, case studies and environmental impact. Butterworth-Heinemann.

    Google Scholar 

  • DiPippo, R. (2012b). Single-flash steam power plants. In Geothermal power plants (pp. 81–109).

    Google Scholar 

  • Geirdal, C. A. C., Gudjonsdottir, M. S., & Jensson, P. (2015). Economic comparison of a well-head geothermal power plant and a traditional one. Geothermics, 53, 1–13.

    Article  Google Scholar 

  • Günkaya, Z., Özdemir, A., Özkan, A., & Banar, M. (2016). Environmental performance of electricity generation based on resources: A life cycle assessment case study in Turkey. Sustainability, 8(11), 1097.

    Article  Google Scholar 

  • Gunnlaugsson, E., Ármannsson, H., Thorhallsson, S., & Steingrímsson, B. (2014). Problems in geothermal operation—Scaling and corrosion (pp. 1–18). United Nations University.

    Google Scholar 

  • Hackstein, F. V., & Madlener, R. (2021). Sustainable operation of geothermal power plants: Why economics matters. Geothermal Energy, 9, 1–30.

    Article  Google Scholar 

  • Herath, H. M. D. P., Wijewardane, M. A., Ranasinghe, R. A. C. P., & Jayasekera, J. G. A. S. (2020). Working fluid selection of organic Rankine cycles. Energy Reports, 6, 680–686.

    Article  Google Scholar 

  • Ho, T., Mao, S. S., & Greif, R. (2012). Increased power production through enhancements to the Organic Flash Cycle (OFC). Energy, 45(1), 686–695.

    Article  CAS  Google Scholar 

  • Jalilinasrabady, S., Itoi, R., Valdimarsson, P., Saevarsdottir, G., & Fujii, H. (2012). Flash cycle optimization of Sabalan geothermal power plant employing exergy concept. Geothermics, 43, 75–82.

    Article  Google Scholar 

  • Kabeyi, M. J. B. (2019). Geothermal electricity generation, challenges, opportunities and recommendations. International Journal of Advances in Scientific Research and Engineering (IJASRE), 5(8), 53–95.

    Article  Google Scholar 

  • Kabeyi, M. J. B. (2020a). Feasibility of wellhead technology power plants for electricity generation. International Journal of Computer Engineering in Research Trends, 7(2), 1–16.

    Google Scholar 

  • Kabeyi, M. J., & Olanrewaju, O. A. (2020, December). Performance analysis of an open cycle gas turbine power plant in grid electricity generation. In 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 524–529). IEEE.

    Google Scholar 

  • Kabeyi, M. J. B., & Olanrewaju, O. A. (2021a, March). Performance analysis of a sugarcane bagasse cogeneration power plant in grid electricity generation. In 11th Annual International Conference on Industrial Engineering and Operations Management, Singapore.

    Google Scholar 

  • Kabeyi, M. J. B., & Oludolapo, A. O. (2020, December). Viability of wellhead power plants as substitutes of permanent power plants. In 2nd African International Conference on Industrial Engineering and Operations Management (Vol. 77), Harare, Zimbabwe.

    Google Scholar 

  • Koroneos, C., & Rovas, D. (2013). Exergy analysis of geothermal electricity using the Kalina cycle. International Journal of Exergy, 12(1), 54–69.

    Article  Google Scholar 

  • Liu, Q., Shang, L., & Duan, Y. (2016). Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources. Applied Energy, 162, 149–162.

    Article  Google Scholar 

  • Meng, D., Liu, Q., & Ji, Z. (2020). Performance analyses of regenerative organic flash cycles for geothermal power generation. Energy Conversion and Management, 224, 113396.

    Article  Google Scholar 

  • Micale, V., Oliver, P., & Messent, F. (2014). The role of public finance in deploying geothermal: Background paper. Climate Policy Initiative, Venice, Italy. Available at: http://climatepolicyinitiative

    Google Scholar 

  • Murugan, R., & Subbarao, P. (2008). Thermodynamic analysis of Rankine-Kalina combined cycle. International Journal of Thermodynamics, 11(3), 133–141.

    Google Scholar 

  • Nakuru, K. (2012). The use of portable geothermal wellhead generators as small power plants to accelerate geothermal development and power generation in Kenya.

    Google Scholar 

  • Ricther, A. (2020). To become a milestone year for the global geothermal energy sector. https://www.nrel.gov/docs/fy16osti/64925.pdf

  • Ricther, A. (2021). ThinkGeoEnergy’s top 10 geothermal countries 2020—Installed power generation capacity (MWe). Thinkgeoenergy. Available online: https://www.thinkgeoenergy.com/thinkgeoenergys-top-10-geothermal-countries-2020-installed-powergeneration-capacity-mwe/. Accessed on February 10, 2021.

  • Saitet, D., & Kwambai, C. (2015, April). Wellhead generating plants: KenGen experience. In World Geothermal Congress (pp. 1–6).

    Google Scholar 

  • Spadacini, C., Xodo, L. G., & Quaia, M. (2017). Geothermal energy exploitation with Organic Rankine Cycle technologies. In Organic Rankine cycle (ORC) power systems (pp. 473–525). Woodhead Publishing.

    Google Scholar 

  • Yanagisawa, N., Muraoka, H., Sasaki, M., Sugita, H., Ioka, S. I., Sato, M., & Osato, K. (2012, February). Starting field test of Kalina system using hot spring fluid in Japan. In Proceedings of 37th Workshop on Geothermal Reservoir Engineering (pp. 1350–1355), Stanford University.

    Google Scholar 

  • Yusupov, Z., & Almaktar, M. (2021). Geothermal power generation. In Geothermal energy. IntechOpen.

    Google Scholar 

  • Zare, V., & Palideh, V. (2018). Employing thermoelectric generator for power generation enhancement in a Kalina cycle driven by low-grade geothermal energy. Applied Thermal Engineering, 130, 418–428.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kriti Yadav .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, K., Sircar, A., Shah, M. (2024). Sustainable Power Generation Cycles Using Geothermal Water. In: Geothermal Fields of India. Springer, Cham. https://doi.org/10.1007/978-3-031-53364-8_2

Download citation

Publish with us

Policies and ethics