Abstract
Research on MRI-based brain tumor segmentation methods has clinical significance and application value. The existing 3D brain tumor segmentation methods can make full use of the three-dimensional spatial information of MRI, but there are problems with large parameters and calculations. In view of the above problems, a brain tumor segmentation method based on 3D Ghost Shuffle U-Net(GSUNet) is proposed. In this paper, the 3D Ghost Module(3D GM) is utilized as the basic feature extractor of the network, which fundamentally solves the problem of the high complexity of the existing 3D brain tumor segmentation models. At the same time, the Ghost Shuffle Module(GSM) is designed, and GSM with stride 2 is utilized to realize down-sampling, optimize the feature extraction, and strengthen the information communication in the channel dimension. The GSM with stride 1 and the designed Dense Ghost Module(DGM) work together as a decoder to improve the representation ability of the network at a lower cost. Experimental results show that GSUNet can achieve segmentation performance comparable to mainstream brain tumor segmentation methods with extremely low model complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abraham, N., Khan, N.M.: Multimodal segmentation with MGF-Net and the focal Tversky loss function. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 191–198. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_18
Ahmad, P., Qamar, S., Hashemi, S.R., Shen, L.: Hybrid labels for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 158–166. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_15
Amian, M., Soltaninejad, M.: Multi-resolution 3D CNN for MRI brain tumor segmentation and survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 221–230. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_21
Baid, U., Shah, N.A., Talbar, S.: Brain tumor segmentation with cascaded deep convolutional neural network. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 90–98. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_9
Bhalerao, M., Thakur, S.: Brain tumor segmentation based on 3D residual U-Net. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 218–225. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_21
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Guo, X., et al.: Brain tumor segmentation based on attention mechanism and multi-model fusion. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 50–60. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_5
Han, K., et al.: GhostNet: more features from cheap operations. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 1577–1586. Computer Vision Foundation / IEEE (2020)
Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)
Kotowski, K., Nalepa, J., Dudzik, W.: Detection and segmentation of brain tumors from MRI using U-Nets. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 179–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_17
Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8
Milletari, F., et al.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Fourth International Conference on 3D Vision, 3DV 2016, Stanford, CA, USA, 25–28 October 2016, pp. 565–571. IEEE Computer Society (2016)
Mou, L., et al.: CS-Net: channel and spatial attention network for curvilinear structure segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 721–730. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_80
Ben Naceur, M., Akil, M., Saouli, R., Kachouri, R.: Deep convolutional neural networks for brain tumor segmentation: boosting performance using deep transfer learning: preliminary results. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 303–315. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_30
Nuechterlein, N., Mehta, S.: 3D-ESPNet with pyramidal refinement for volumetric brain tumor image segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 245–253. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_22
Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. CoRR abs/1804.03999 (2018)
Rehman, M.U., et al.: BrainSeg-Net: brain tumor MR image segmentation via enhanced encoder-decoder network. Diagnostics (Basel, Switzerland) 11(2), 169 (2021)
Tai, Y., Huang, S., et al.: Computational complexity reduction of neural networks of brain tumor image segmentation by introducing fermi-dirac correction functions. Entropy 23(2), 223 (2021)
Yan, K., Sun, Q., Li, L., Li, Z.: 3D deep residual encoder-decoder CNNS with squeeze-and-excitation for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 234–243. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_23
Zhang, J., Jiang, Z., et al.: Attention gate reSU-Net for automatic MRI brain tumor segmentation. IEEE Access 8, 58533–58545 (2020)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hong, J., Xie, J., He, X., Yang, C. (2024). GSUNet: A Brain Tumor Segmentation Method Based on 3D Ghost Shuffle U-Net. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14554. Springer, Cham. https://doi.org/10.1007/978-3-031-53305-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-53305-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53304-4
Online ISBN: 978-3-031-53305-1
eBook Packages: Computer ScienceComputer Science (R0)