Skip to main content

Hydroponics Removal of Wastewater’s Contaminants

  • Chapter
  • First Online:
Hydroponics and Environmental Bioremediation

Abstract

As plants have the capacity to absorb nutrients, harmful metals, and developing pollutants, hydroponic systems can be employed as a treatment procedure for partially treated wastewater or reclaimed water before its release to the environment. Hydroponic systems are an alternative to stop water pollution and scarcity because of their high rates of nutrient removal from wastewater, including N, P, and K. Because they employ ecologically friendly methods, hydroponic systems are regarded as a crucial technology for food production in cities in terms of sustainability. However, since the vast majority of research on hydroponics with recycled water has been done at the laboratory scale, testing full-scale systems is important to show that it is viable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash, P. C., Pandey, V. C., Srivastava, P., Rakesh, P. S., Chandran, S., Singh, N., & Thomas, A. P. (2009). Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. Journal of Hazardous Materials, 170, 791–797.

    Article  CAS  Google Scholar 

  • Brummell, D. A., & Harpster, M. H. (2001). Cell wall metabolism in fruit softening quality and its manipulation in transgenic plants. Plant Molecular Biology, 47, 311–339.

    Article  CAS  Google Scholar 

  • Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches forenhanced phytoextraction of heavy metals. Journal of Environmental Management, 105, 103–120.

    Article  CAS  Google Scholar 

  • Carvalho, R. C., Bastos, R. G., & Fonseca-Souza, C. (2018). Influence of the use of wastewater on nutrient absorption and production of lettuce grown in a hydroponic system. Agricultural Water Management, 203, 311–321.

    Article  Google Scholar 

  • Christie, E. (2014). Water and nutrient reuse within closed hydroponic systems (Electronic Theses and Dissertations). Sitio web: https://digitalcommons.georgiasouthern.edu/etd/1096. Con acceso el 16 de abril de 2023.

  • Cifuentes-Torres, M. L. (2022). Reuso de Agua Residual tratada como fuente de nutrientes para el crecimiento de flores de interés comercial en Sistemas Hidropónicos (p. 180). Tesis de Doctorado en Medio Ambiente y Desarrollo. Universidad Autónoma de Baja California.

    Google Scholar 

  • Environmental Protection Agency (EPA). (2000). National Water Quality Inventory 2000 Report (EPA-841-R-02-001). Washington, Estados Unidos. 207 págs. Sitio web: https://www.epa.gov/sites/default/files/2015-09/documents/2000_national_water_quality_inventory_report_to_congress.pdf. Con acceso el 12 de mayo de 2023.

  • Fawzy, M. A., Badr, N. E. S., El-Khatib, A., & Abo-El-Kassem, A. (2012). Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environmental Monitoring and Assessment, 184, 1753–1771.

    Article  CAS  Google Scholar 

  • Gebeyehu, A., Shebeshe, N., Kloos, H., & Belay, S. (2018). Suitability of nutrient removal from brewery wastewater using a hydroponic technology with Typha latifolia. BMC Biotechnology, 18, 174.

    Article  Google Scholar 

  • Giripunje, M. D., Fulke, A. B., Meshram, P. U. (2015). Remediation techniques for heavy-metals contamination in lakes: A mini-review. Clean—Soil Air Water, 43, 1350–1354.

    Google Scholar 

  • Grewal, H. S., Maheshwari, B., & Parks, S. E. (2011). Water and nutrient use efficiency of a low cost hydroponic greenhouse for a cucumber crop: An Australian case study. Agricultural Water Management, 98, 841–846.

    Article  Google Scholar 

  • Gomez-Lopez, V. M., Devlieghere, F., Bonduelle, V., & Debevere, J. (2005). Intense light pulses decontamination of minimally processed vegetables and their shelf-life. International Journal of Food Microbiology, 103, 79–89.

    Article  CAS  Google Scholar 

  • Ha, N. T. H., Sakakibara, M., & Sano, S. (2011). Accumulation of Indium and other heavy metals by Eleocharis acicularis: An option for phytoremediation and phytomining. Bioresource Technology, 102, 2228–2234.

    Article  Google Scholar 

  • Haddad, M., Mizyed, N., & Masoud, M. (2012). Evaluation of gradual hydroponic system for decentralized wastewater treatment and reuse in rural areas of Palestine. International Journal of Agricultural and Biological Engineering, 5, 47–53.

    Google Scholar 

  • Harrington, C., & Scholz, M. (2010). Assessment of pre-digested piggery wastewater treatment operations with surface flow integrated constructed wetlands. Bioresource Technology, 101, 7713–7723.

    Article  CAS  Google Scholar 

  • Healy, M. G., Rodgers, M., & Mulqueen, J. (2007). Treatment of dairy wastewater using constructed wetlands and intermittent sand filters. Bioresource Technology, 98, 2268–2281.

    Article  CAS  Google Scholar 

  • Hirel, B., Le Gouis, J., Ney, B., & Gallais, A. (2007). The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, 58, 2369–2387.

    Article  CAS  Google Scholar 

  • Hijosa-Valsero, M., Matamoros, V., Martín-Villacort, J., Bécares, E., & Bayona, J. M. (2010). Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities. Water Research, 44, 1429–1439.

    Article  CAS  Google Scholar 

  • Jha, V. N., Tripathi, R. M., Sethy, N. K., & Sahoo, S. K. (2016). Uptake of uranium by aquatic plants growing in freshwater ecosystem around uranium mill tailings pondat Jaduguda, India. Science of the Total Environment, 539, 175–184.

    Article  CAS  Google Scholar 

  • Kadlec, R. H., & Reddy, K. R. (2001). Temperature effects in wetlands. Water Environment Research, 73, 543–557.

    Article  CAS  Google Scholar 

  • Ko, C. H., Lee, T. M., Chang, F. C., & Liao, S. P. (2011). The correlations between system treatment efficiencies and aboveground emergent macrophyte nutrient removal for the Hsin-Hai Bridge phase II constructed wetland. Bioresource Technology, 102, 5431–5437.

    Article  CAS  Google Scholar 

  • Li, J., Cheng, W., Xu, L., Strong, P. J., & Chen, H. (2014). Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system. Environmental Science and Pollution Research, 22, 4587–4596.

    Article  Google Scholar 

  • Luedtke, A. N., Chapman, B., & Powell, D. A. (2003). Implementation and analysis of an on-farm food safety program for the production of greenhouse vegetables. Journal of Food Protection, 66, 485–489.

    Article  Google Scholar 

  • Matamoros, V., & Salvadó, V. (2012). Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants. Chemosphere, 86, 111–117.

    Article  CAS  Google Scholar 

  • Massa, N., Andreucci, F., Poli, M., Aceto, M., Barbato, R., & Berta, G. (2010). Screening for heavy metal accumulators amongst autochtonous plants in a polluted site in Italy. Ecotoxicology and Environmental Safety, 73, 1988–1997.

    Article  CAS  Google Scholar 

  • Molinos-Selante, M., Hermandez-Sancho, F., & Sala-Garrido, R. (2011). Cost–Benefit analysis of water-reuse projects for environmental purposes: A case study for Spanish wastewater treatment plants. Journal of Environmental Management, 92(12), 3091–3097.

    Article  Google Scholar 

  • Moreno, F. N., Anderson, C. W. N., Stewart, R. B., & Robinson, B. H. (2008). Phytofiltration of mercury-contaminated water: Volatisation and plant-accumulation aspects. Environmental and Experimental Botany, 62, 8–85.

    Article  Google Scholar 

  • Ndulini, S. F., Sithole, G. M., & Mthembu, M. S. (2018). Investigation of nutrients and faecal coliforms in wastewater using a hydroponic system. Physics and Chemistry of the Earth, 106, 67–72.

    Google Scholar 

  • Norström, A., Larsdotter, K., Gumaelius, L., la Cour Jansen, J., & Dalhammar, G. (2003). A small scale hydroponics wastewater treatment system under Swedish-conditions. Water Science and Technology, 48(11–12), 161–167.

    Google Scholar 

  • Nelson, V. I. (2008). New approaches in decentralised water infrastructure. Coalition for Alternative Wastewater Treatment (Gloucester MA).

    Google Scholar 

  • Nyquist, J., & Greger, M. (2007). Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environmental and Experimental Botany, 60(2), 219–226.

    Article  CAS  Google Scholar 

  • Olguín, E. J., & Sánchez-Galván, G. (2012). Heavy metal removal in phytofiltration and phycoremediation: The need to differentiate between bioadsorption and bioaccumulation. New Biotechnology, 30, 3–8.

    Article  Google Scholar 

  • Ong, S. A., Uchiyama, K., Inadama, D., Ishida, Y., & Yamagiwa, K. (2010). Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresource Technology, 101, 7239–7244.

    Article  CAS  Google Scholar 

  • Organización Mundial de la Salud (OMS). (2016). Planificación de la seguridad del Saneamiento, Manual para el uso y la disposición seguros de aguas residuales, aguas grises y excretas. Ginebra, Suiza 136 págs. Sitio web: https://apps.who.int/iris/bitstream/10665/250331/1/9789243549248-spa.pdf. Con acceso del 20 de mayo de 2023.

  • Osem, Y., Chen, Y., Levinson, D., & Hadar, Y. (2006). The effects of plant roots on microbial community structure in aerated wastewater-treatment reactors. Ecological Engineering, 29, 133–142.

    Article  Google Scholar 

  • Ottoson, J., Norstrom, A., & Dalhammar, G. (2005). Removal of micro-organisms in small scalehydroponics wastewater treatment system. Letters in Applied Microbiology, 40, 443–447.

    Article  CAS  Google Scholar 

  • Owili, M. A. 2003. Assessment of the impact of sewage effluents on coastal water quality in Hafnarfjordur, Iceland. The United Nations Fishery Training Program, Final Report. Sitio Web: https://www.grocentre.is/ftp/moya/gro/index/publication/assessment-of-impact-of-sewage-effluents-on-coastal-water-quality-in-hafnarfjordur-iceland. Con acceso el 20 de mayo de 2023.

  • Pratas, J., Paulo, C., Favas, P. J., & Venkatachalam, P. (2014). Potential of aquatic plants for phytofiltration of uranium-contaminated waters in laboratory conditions. Ecological Engineering, 69, 170–176.

    Article  Google Scholar 

  • Rababah, A. A., & Ashbolt, N. J. (2000). Innovative production treatment hydroponic farm for primary municipal sewage utilisation. Water Research, 34, 825–834.

    Article  CAS  Google Scholar 

  • Rakocy, E. (1997). Integrating Tilapia culture with vegetable hydroponics in recirculating systems. Tilapia Aquaculture in Americans, 1, 163–184.

    Google Scholar 

  • Rakocy, J. E., Bailey, D. S., Shultz, R. C., & Thoman, E. S. (2004). Update on tilapia and vegetable production in the UVI aquaponic system. In New dimensions on farmed Tilapia: proceedings of the sixth international symposium on Tilapia in Aquaculture, held September (pp. 12–16).

    Google Scholar 

  • Rycewicz-Borecki, M., McLean, J. E., & Dupont, R. R. (2016). Bioaccumulation of copperlead, and zinc in six macrophyte species grown in simulated storm water bioretention systems. Journal of Environmental Management, 166, 267–275.

    Article  CAS  Google Scholar 

  • Schrammel, E., (2014). A cost–benefit analysis of hydroponic wastewater treatment in Sweden (Dissertation). Swedish University of Agricultural Sciences.

    Google Scholar 

  • Shalaby, I. M. I., Altalhy, A. D., & Mosallam, H. A. (2008). Preliminary field study of a model plant for sewage water treatment using gravel bed hydroponics method. World Applied Sciences Journal, 4(2), 238–243.

    Google Scholar 

  • Solanki, S., Gaurav, N., Bhawani, G., Bhawani, G., & Kumar, A. (2017). Challenges and possibilities in hydroponics: An Indian perspective. International Journal of Advanced Research, 5(11), 177–182. https://doi.org/10.21474/IJAR01/5752

    Article  Google Scholar 

  • Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Caster, M., Bederski, O., Müller, R. A., & Moormann, H. (2003). Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, 22, 93–117.

    Article  CAS  Google Scholar 

  • Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, 31. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • Vaillant, N., Monnet, F., Sallanon, H., Coudret, A., & Hitmi, A. (2003). Treatment of domestic wastewater by a hydroponic NFT system. Chemosphere, 50, 121–129.

    Article  CAS  Google Scholar 

  • Van Os, E. (1999). Design of sustainable hydroponic systems in relation to environment friendly disinfection methods. International Symposium on Growing Media and Hydroponics, 548, 197–206.

    Google Scholar 

  • Vinita, V., Singh, U., Billore, S. (2008). Proceedings of the 12th International World Lake Conference. Efficiency of Root Zone Technology for Treatment of Domestic Wastewater.

    Google Scholar 

  • Vesely, T., Tlustos, P., & Száková, J. (2011). The use of water lettuce (Pistia stratiotes L.) for rhizofiltration of a highly polluted solution by cadmium and lead. International Journal of Phytoremediation, 13, 859–872.

    Article  CAS  Google Scholar 

  • Vyzamal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380, 48–65.

    Article  Google Scholar 

  • WHO. (2006). Guidelines for the safe use of wastewater, excreta and grey water (Vol. 2). Wastewater Use in Agriculture.

    Google Scholar 

  • Xie, W. Y., Huang, Q., Li, G., Rensing, C., & Zhu, Y. G. (2013). Cadmium accumulation in the rootless macrophyte Wolffia globosa and its potential for phytoremediation. International Journal of Phytoremediation, 15, 385–397.

    Article  CAS  Google Scholar 

  • Xing, W., Wu, H., Hao, B., Huang, W., & Liu, G. (2013). Bioaccumulation of heavy metals by submerged macrophytes: Looking for hyperaccumulators in eutrophiclakes. Environmental Science and Technology, 47, 4695–4703.

    Article  CAS  Google Scholar 

  • Yang, L., Giannis, A., Chang, V., Liu, B., Zhang, J., & Wang, J. (2015). Application of hydroponic systems for the treatment of source-separated human urine. Ecological Engineering, 81, 182–191. https://doi.org/10.1016/j.ecoleng.2015.04.013

    Article  Google Scholar 

  • Zhou, X.-H., Huang, B.-C., Zhou, T., Liu, Y.-C., & Shi, H. C. (2015). Aggregation behaviour of engineered nanoparticles and their impact on activated sludge in wastewater. Chemosphere, 119, 56–576.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopoldo G. Mendoza-Espinosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cifuentes-Torres, M.L., Mendoza-Espinosa, L.G., Correa-Reyes, J.G. (2024). Hydroponics Removal of Wastewater’s Contaminants. In: Kumar, N. (eds) Hydroponics and Environmental Bioremediation. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-53258-0_14

Download citation

Publish with us

Policies and ethics