Skip to main content

HLB Disease Detection in Omani Lime Trees Using Hyperspectral Imaging Based Techniques

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2023)

Abstract

In the recent years omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and Enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The high-resolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-spatial RGB images were given to Convolution Neural Network for deep feature extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560 nm, 678 nm, 726 nm and 750 nm. This research offers a promising and effective approach utilizing cutting-edge technology to address the critical challenge of HLB disease in Omani citrus trees, providing a potential pathway for more efficient disease identification and management in the citrus industry.

Supported by The Research Council (TRC), Sultanate of Oman.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

Download references

Acknowledgements

The research leading to these results has received funding from the Research Council (TRC) of the Sultanate of Oman under the Block Funding Program. TRC Block Funding Agreement No BFP/RGP/EBR/21/332. The authors would like to thank Mr. Mohammed, Lab technician, Ministry of Agriculture, Fisheries Wealth, and Water Resources, Liwa, Sohar in conducting the Polymerase chain reaction (PCR) test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacintha Menezes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Menezes, J., Dharmalingam, R., Shivakumara, P. (2024). HLB Disease Detection in Omani Lime Trees Using Hyperspectral Imaging Based Techniques. In: Santosh, K., et al. Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2023. Communications in Computer and Information Science, vol 2027. Springer, Cham. https://doi.org/10.1007/978-3-031-53085-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53085-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53084-5

  • Online ISBN: 978-3-031-53085-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics