Skip to main content

Postural Control During Perturbations

  • Chapter
  • First Online:
Motion Analysis of Biological Systems

Abstract

The chapter delves into a wide range of approaches employed by individuals to withstand perturbations, encompassing neuromuscular and neuromechanical methods. It also investigates responses to diverse perturbations, including somatosensory, vestibular, and visual stimuli. Additionally, the chapter offers insights into various training and techniques aimed at improving postural control, particularly among populations vulnerable to stability-related disorders like PD and the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allin, L. J., Nussbaum, M. A., & Madigan, M. L. (2019). Two novel slip training methods improve the likelihood of recovering balance after a laboratory-induced slip. Journal of Applied Biomechanics,35(1), 37–43.

    Article  Google Scholar 

  • Appiah-Kubi, K. O., & Wright, W. (2019). Vestibular training promotes adaptation of multisensory integration in postural control. Gait & Posture,73, 215–220.

    Article  Google Scholar 

  • Assländer, L., Hettich, G., & Mergner, T. (2015). Visual contribution to human standing balance during support surface tilts. Human Movement Science,41, 147–164.

    Article  Google Scholar 

  • Bhatt, T., Yang, F., & Pai, Y.-C. (2012). Learning to resist gait-slip falls: Long-term retention in community-dwelling older adults. Archives of Physical Medicine and Rehabilitation,93(4), 557–564.

    Article  Google Scholar 

  • Bohm, S., Mademli, L., Mersmann, F., & Arampatzis, A. (2015). Predictive and reactive locomotor adaptability in healthy elderly: A systematic review and meta-analysis. Sports Medicine,45, 1759–1777.

    Article  Google Scholar 

  • Burns, E. (2018). Deaths from falls among persons aged \(\ge \) 65 years-united states, 2007–2016. MMWR. Morbidity and Mortality Weekly Report, 67, 509–514.

    Article  Google Scholar 

  • Cha, H.-G., Kim, T.-H., & Kim, M.-K. (2016). Therapeutic efficacy of walking backward and forward on a slope in normal adults. Journal of Physical Therapy Science,28(6), 1901–1903.

    Article  Google Scholar 

  • Chambers, A. J., & Cham, R. (2007). Slip-related muscle activation patterns in the stance leg during walking. Gait & Posture,25(4), 565–572.

    Article  Google Scholar 

  • Chander, H., Arachchige, S. N. K., Wilson, S. J., Knight, A. C., Burch V, R. F., Carruth, D. W., Wade, C., & Garner, J. C. (2020). Impact of military footwear type and a load carriage workload on slip initiation biomechanics. International Journal of Human Factors and Ergonomics,7(2), 125–143.

    Google Scholar 

  • Chander, H., Garner, J. C., & Wade, C. (2014). Impact on balance while walking in occupational footwear. Footwear Science,6(1), 59–66.

    Article  Google Scholar 

  • Chander, H., Knight, A. C., Garner, J. C., Wade, C., Carruth, D., Wilson, S. J., et al. (2019). Impact of military type footwear and load carrying workload on postural stability. Ergonomics,62(1), 103–114.

    Article  Google Scholar 

  • Chander, H., Kodithuwakku Arachchige, S. N., Hill, C. M., Turner, A. J., Deb, S., Shojaei, A., et al. (2019). Virtual-reality-induced visual perturbations impact postural control system behavior. Behavioral Sciences,9(11), 113.

    Article  Google Scholar 

  • Chander, H., Kodithuwakku Arachchige, S. N., Turner, A. J., & Knight, A. C. (2022). Is it me or the room moving? Recreating the classical “moving room” experiment with virtual reality for postural control adaptation. Adaptive Behavior,30(2), 199–204.

    Article  Google Scholar 

  • Chander, H., Shojaei, A., Deb, S., Kodithuwakku Arachchige, S. N., Hudson, C., Knight, A. C., & Carruth, D. W. (2021). Impact of virtual reality-generated construction environments at different heights on postural stability and fall risk. Workplace Health & Safety,69(1), 32–40.

    Article  Google Scholar 

  • Chander, H., Stewart, E., Saucier, D., Nguyen, P., Luczak, T., Ball, J. E., et al. (2019). Closing the wearable gap-part III: Use of stretch sensors in detecting ankle joint kinematics during unexpected and expected slip and trip perturbations. Electronics,8(10), 1083.

    Article  Google Scholar 

  • Cripps, A. E., & Livingston, S. C. (2017). The head shake sensory organization test (HS-SOT): Normative data and correlation with dynamic visual acuity testing. Journal of Sports Medicine and Allied Health Sciences: Official Journal of the Ohio Athletic Trainers Association,3(2), 3.

    Google Scholar 

  • Cyma-Wejchenig, M., Tarnas, J., Marciniak, K., & Stemplewski, R. (2020). The influence of proprioceptive training with the use of virtual reality on postural stability of workers working at height. Sensors,20(13), 3731.

    Article  Google Scholar 

  • Domellöf, E., Barbu-Roth, M., Rönnqvist, L., Jacquet, A.-Y., & Fagard, J. (2015). Infant manual performance during reaching and grasping for objects moving in depth. Frontiers in Psychology,6, 1142.

    Article  Google Scholar 

  • Eng, J. J., Winter, D. A., & Patla, A. E. (1994). Strategies for recovery from a trip in early and late swing during human walking. Experimental Brain Research,102, 339–349.

    Article  Google Scholar 

  • Enoka, R. M. (2015). Neuromechanics of Human Movement. Human Kinetics.

    Google Scholar 

  • Gerards, M. H., McCrum, C., Mansfield, A., & Meijer, K. (2017). Perturbation-based balance training for falls reduction among older adults: Current evidence and implications for clinical practice. Geriatrics & Gerontology International,17(12), 2294–2303.

    Article  Google Scholar 

  • Geytenbeek, J. (2002). Evidence for effective hydrotherapy. Physiotherapy,88(9), 514–529.

    Article  Google Scholar 

  • Horak, F., & Kuo, A. (2000). Postural adaptation for altered environments, tasks, and intentions. In Biomechanics and neural control of posture and movement (pp. 267–281). Springer.

    Google Scholar 

  • Horak, F. B. (1987). Clinical measurement of postural control in adults. Physical Therapy,67(12), 1881–1885.

    Article  Google Scholar 

  • Horak, F. B. (2006). Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age and Ageing, 35(suppl_2), ii7–ii11.

    Google Scholar 

  • Horak, F. B., & Hlavacka, F. (2001). Somatosensory loss increases vestibulospinal sensitivity. Journal of Neurophysiology,86(2), 575–585.

    Article  Google Scholar 

  • Inkol, K. A., Huntley, A. H., & Vallis, L. A. (2018). Do perturbation-evoked responses result in higher reaction time costs depending on the direction and magnitude of perturbation? Experimental Brain Research,236, 1689–1698.

    Article  Google Scholar 

  • Jacobs, J. V., & Horak, F. (2007). Cortical control of postural responses. Journal of Neural Transmission,114, 1339–1348.

    Article  Google Scholar 

  • Jöbges, M., Heuschkel, G., Pretzel, C., Illhardt, C., Renner, C., & Hummelsheim, H. (2004). Repetitive training of compensatory steps: A therapeutic approach for postural instability in parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry,75(12), 1682–1687.

    Article  Google Scholar 

  • Kodithuwakku Arachchige, S. N., Chander, H., Turner, A. J., & Knight, A. C. (2021). Impact of prolonged exposure to a slippery surface on postural stability. International Journal of Environmental Research and Public Health,18(5), 2214.

    Article  Google Scholar 

  • Kodithuwakku Arachchige, S. N., Chander, H., Turner, A. J., Wilson, S. J., Simpson, J. D., Knight, A. C., et al. (2020). Muscle activity during postural stability tasks: Role of military footwear and load carriage. Safety,6(3), 35.

    Article  Google Scholar 

  • Lee, B.-C., Kim, C.-S., & Seo, K.-H. (2019). The body’s compensatory responses to unpredictable trip and slip perturbations induced by a programmable split-belt treadmill. IEEE Transactions on Neural Systems and Rehabilitation Engineering,27(7), 1389–1396.

    Article  Google Scholar 

  • Lee, D. N., & Aronson, E. (1974). Visual proprioceptive control of standing in human infants. Perception & Psychophysics,15, 529–532.

    Article  Google Scholar 

  • Lim, H. W., Kim, K.-M., Jun, H. J., Chang, J., Jung, H. H., & Chae, S. W. (2012). Correlating the head shake-sensory organizing test with dizziness handicap inventory in compensation after vestibular neuritis. Otology & Neurotology,33(2), 211–214.

    Article  Google Scholar 

  • Lin, L., Cockerham, D., Chang, Z., & Natividad, G. (2016). Task speed and accuracy decrease when multitasking. Technology, Knowledge and Learning,21, 307–323.

    Article  Google Scholar 

  • Lord, S. R., Ward, J. A., Williams, P., & Anstey, K. J. (1994). Physiological factors associated with falls in older community-dwelling women. Journal of the American Geriatrics Society,42(10), 1110–1117.

    Article  Google Scholar 

  • Lurie, J. D., Zagaria, A. B., Pidgeon, D. M., Forman, J. L., & Spratt, K. F. (2013). Pilot comparative effectiveness study of surface perturbation treadmill training to prevent falls in older adults. BMC Geriatrics,13(1), 1–8.

    Article  Google Scholar 

  • Maki, B., McIlroy, W., & Perry, S. (1996). Influence of lateral destabilization on compensatory stepping responses. Journal of Biomechanics,29(3), 343–353.

    Article  Google Scholar 

  • Maki, B. E., Edmondstone, M. A., & McIlroy, W. E. (2000). Age-related differences in laterally directed compensatory stepping behavior. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences,55(5), M270–M277.

    Article  Google Scholar 

  • Mancini, M., Nutt, J., & Horak, F. (2020). How is balance controlled by the nervous system? Balance Dysfunction in Parkinson’s Disease (1st ed., pp. 1–24). Academic Press. ISBN 9780128138748. https://doi.org/10.1016/B978-0-12-813874-8.00001-5

  • Mansfield, A., Peters, A. L., Liu, B. A., & Maki, B. E. (2010). Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: A randomized controlled trial. Physical Therapy,90(4), 476–491.

    Article  Google Scholar 

  • McCrum, C., Bhatt, T. S., Gerards, M. H., Karamanidis, K., Rogers, M. W., Lord, S. R., & Okubo, Y. (2022). Perturbation-based balance training: Principles, mechanisms and implementation in clinical practice. Frontiers in Sports and Active Living, 4, 1015394.

    Article  Google Scholar 

  • McCrum, C., Gerards, M. H., Karamanidis, K., Zijlstra, W., & Meijer, K. (2017). A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults. European Review of Aging and Physical Activity, 14(1), 1–11.

    Article  Google Scholar 

  • McIlroy, W. E., & Maki, B. E. (1996). Age-related changes in compensatory stepping in response to unpredictable perturbations. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences,51(6), M289–M296.

    Article  Google Scholar 

  • Michalska, J., Kamieniarz, A., Sobota, G., Stania, M., Juras, G., & Słomka, K. J. (2021). Age-related changes in postural control in older women: Transitional tasks in step initiation. BMC Geriatrics,21, 1–9.

    Article  Google Scholar 

  • Morris, C. E., Chander, H., Garner, J. C., DeBusk, H., Owens, S. G., Valliant, M. W., & Loftin, M. (2017). Evaluating human balance following an exercise intervention in previously sedentary, overweight adults. Journal of Functional Morphology and Kinesiology,2(2), 19.

    Article  Google Scholar 

  • Nagano, A., Yoshioka, S., Hay, D. C., Himeno, R., & Fukashiro, S. (2006). Influence of vision and static stretch of the calf muscles on postural sway during quiet standing. Human Movement Science,25(3), 422–434.

    Article  Google Scholar 

  • Nashner L.M (1993). Computerized dynamic posturography. Handbook of balance function testing (pp. 208–307).

    Google Scholar 

  • Nyberg, L., Lundin-Olsson, L., Sondell, B., Backman, A., Holmlund, K., Eriksson, S., et al. (2006). Using a virtual reality system to study balance and walking in a virtual outdoor environment: Apilot study. Cyberpsychology & Behavior,9(4), 388–395.

    Article  Google Scholar 

  • Ortman, J. M., Velkof, V. A., & Hogan, H. (2014). An Aging Nation: The Older Population in the United States, No. P25–1140. United States Census Bureau. https://www.census.gov/library/publications/2014/demo/p25-1140.html

  • Pai, Y.-C., Bhatt, T., Yang, F., Wang, E., & Kritchevsky, S. (2014). Perturbation training can reduce community-dwelling older adults’ annual fall risk: A randomized controlled trial. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences,69(12), 1586–1594.

    Article  Google Scholar 

  • Pai, Y.-C., & Bhatt, T. S. (2007). Repeated-slip training: An emerging paradigm for prevention of slip-related falls among older adults. Physical Therapy,87(11), 1478–1491.

    Article  Google Scholar 

  • Paran, I., Nachmani, H., & Melzer, I. (2020). A concurrent attention-demanding task did not interfere with balance recovery function in standing and walking among young adults-an explorative laboratory study. Human Movement Science,73, 102675.

    Article  Google Scholar 

  • Parijat, P., Lockhart, T. E., & Liu, J. (2015). Effects of perturbation-based slip training using a virtual reality environment on slip-induced falls. Annals of Biomedical Engineering,43, 958–967.

    Article  Google Scholar 

  • Patel, P. J., & Bhatt, T. (2015). Attentional demands of perturbation evoked compensatory stepping responses: Examining cognitive-motor interference to large magnitude forward perturbations. Journal of Motor Behavior,47(3), 201–210.

    Article  Google Scholar 

  • Peterka, R. J. (2002). Sensorimotor integration in human postural control. Journal of Neurophysiology,88(3), 1097–1118.

    Article  Google Scholar 

  • Raffegeau, T. E., Fawver, B., Young, W. R., Williams, A. M., Lohse, K. R., & Fino, P. C. (2020). The direction of postural threat alters balance control when standing at virtual elevation. Experimental Brain Research,238, 2653–2663.

    Article  Google Scholar 

  • Redfern, M. S., Cham, R., Gielo-Perczak, K., Grönqvist, R., Hirvonen, M., Lanshammar, H., et al. (2001). Biomechanics of slips. Ergonomics,44(13), 1138–1166.

    Article  Google Scholar 

  • Rogers, M. W., & Mille, M.-L. (2018). Balance Perturbations. Handbook of Clinical Neurology,159, 85–105.

    Article  Google Scholar 

  • Shumway-Cook, A., & Horak, F. B. (1986). Assessing the influence of sensory interaction on balance: Suggestion from the field. Physical Therapy,66(10), 1548–1550.

    Article  Google Scholar 

  • Shupert, C. L., & Horak, F. B. (1999). Adaptation of postural control in normal and pathologic aging: Implications for fall prevention programs. Journal of Applied Biomechanics,15(1), 64–74.

    Article  Google Scholar 

  • Slobounov, S., Wu, T., Hallett, M., Shibasaki, H., Slobounov, E., & Newell, K. (2006). Neural underpinning of postural responses to visual field motion. Biological Psychology,72(2), 188–197.

    Article  Google Scholar 

  • Tinetti, M. E., Inouye, S. K., Gill, T. M., & Doucette, J. T. (1995). Shared risk factors for falls, incontinence, and functional dependence: Unifying the approach to geriatric syndromes. Jama,273(17), 1348–1353.

    Article  Google Scholar 

  • Wachholz, F., Kockum, T., Haid, T., & Federolf, P. (2019). Changed temporal structure of neuromuscular control, rather than changed intersegment coordination, explains altered stabilographic regularity after a moderate perturbation of the postural control system. Entropy,21(6), 614.

    Article  Google Scholar 

  • Wang, T.-Y., Bhatt, T., Yang, F., & Pai, Y.-C. (2012). Adaptive control reduces trip-induced forward gait instability among young adults. Journal of Biomechanics,45(7), 1169–1175.

    Article  Google Scholar 

  • Warren, R. (1976). The perception of egomotion. Journal of Experimental Psychology: Human Perception and Performance,2(3), 448.

    Google Scholar 

  • Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait & Posture,3(4), 193–214.

    Article  Google Scholar 

  • Winter, D. A., Patla, A. E., Prince, F., Ishac, M., & Gielo-Perczak, K. (1998). Stiffness control of balance in quiet standing. Journal of Neurophysiology,80(3), 1211–1221.

    Article  Google Scholar 

  • Yu, W., Cha, S., & Seo, S. (2017). The effect of ball exercise on the balance ability of young adults. Journal of Physical Therapy Science,29(12), 2087–2089.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Chander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kodithuwakku Arachchige, S.N.K., Chander, H. (2024). Postural Control During Perturbations. In: Singh, R.E. (eds) Motion Analysis of Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-52977-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52977-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52976-4

  • Online ISBN: 978-3-031-52977-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics