Skip to main content

Simulation Model for Investigation on Recurrent Feedback Inhibition By Renshaw Cells

  • Chapter
  • First Online:
Motion Analysis of Biological Systems
  • 30 Accesses

Abstract

This chapter discusses Renshaw cells, which are part of the recurrent feedback inhibition loop located in the spinal cord’s ventral horn. This loop regulates the firing of motoneuron signals for muscle contraction. The chapter outlines the various state feedback output responses required to lessen tremors and enhance the impacted population’s force-muscle activation response. Simulation model investigation reveals such frequency responses. Renshaw cells orchestrate the recurrent feedback inhibition by synchronizing oscillations and strengthening muscular action at frequencies over 20 Hz. They also eliminate oscillations and tremors in the muscles at about 10 Hz. This emphasizes how beneficial Renshaw cells are at reducing physiological tremors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, D., Windhorst, U., & Inbar, G. (1978). The effects of recurrent inhibition on the cross-correlated firing patterns of motoneurones (and their relation to signal transmission in the spinal cord-muscle channel). Biological Cybernetics, 29, 229–235.

    Article  Google Scholar 

  • Altman, J., & Bayer, S. A. (2001). Development of the human spinal cord: An interpretation based on experimental studies in animals. Oxford University Press.

    Google Scholar 

  • Baker, S., & Lemon, R. (1998). Computer simulation of post-spike facilitation in spike-triggered averages of rectified EMG. Journal of Neurophysiology, 80(3), 1391–1406.

    Article  Google Scholar 

  • Bareyre, F. M., Kerschensteiner, M., Misgeld, T., & Sanes, J. R. (2005). Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nature Medicine, 11(12), 1355–1360.

    Article  Google Scholar 

  • Brownstone, R. M., & Bui, T. V. (2010). Spinal interneurons providing input to the final common path during locomotion. Progress in Brain Research, 187, 81–95.

    Article  Google Scholar 

  • Chen, H.-H., & Frank, E. (1999). Development and specification of muscle sensory neurons. Current Opinion in Neurobiology, 9(4), 405–409.

    Article  Google Scholar 

  • Chen, W. V., Alvarez, F. J., Lefebvre, J. L., Friedman, B., Nwakeze, C., Geiman, E., Smith, C., Thu, C. A., Tapia, J. C., Tasic, B., et al. (2012). Functional significance of isoform diversification in the protocadherin gamma gene cluster. Neuron, 75(3), 402–409.

    Article  Google Scholar 

  • Curtis, D., Game, C., Lodge, D., & McCulloch, R. (1976). A pharmacological study of Renshaw cell inhibition. The Journal of Physiology, 258(1), 227–242.

    Article  Google Scholar 

  • Eccles, J., Eccles, R. M., Iggo, A., & Ito, M. (1961). Distribution of recurrent inhibition among motoneurones. The Journal of Physiology, 159(3), 479.

    Article  Google Scholar 

  • Eccles, J. C., Fatt, P., & Koketsu, K. (1954). Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. The Journal of Physiology, 126(3), 524.

    Article  Google Scholar 

  • Elble, R., & Koller, W. (1990). Unusual forms of tremor. In Tremor, (pp. 154–157). The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Elble, R. J., & Randall, J. E. (1976). Motor-unit activity responsible for 8-to 12-Hz component of human physiological finger tremor. Journal of Neurophysiology, 39(2), 370–383.

    Article  Google Scholar 

  • Fyffe, R. (1991). Spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat. Journal of Neurophysiology, 65(5), 1134–1149.

    Article  Google Scholar 

  • Gabbott, P., & Stewart, M. (1987). Distribution of neurons and glia in the visual cortex (area 17) of the adult albino rat: A quantitative description. Neuroscience, 21(3), 833–845.

    Article  Google Scholar 

  • Goulding, M. (2009). Circuits controlling vertebrate locomotion: Moving in a new direction. Nature Reviews Neuroscience, 10(7), 507–518.

    Article  MathSciNet  Google Scholar 

  • Grillner, S., & Jessell, T. M. (2009). Measured motion: Searching for simplicity in spinal locomotor networks. Current Opinion in Neurobiology, 19(6), 572–586.

    Article  Google Scholar 

  • Hanson, M. G., & Landmesser, L. T. (2003). Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. Journal of Neuroscience, 23(2), 587–600.

    Article  Google Scholar 

  • Hippenmeyer, S., Vrieseling, E., Sigrist, M., Portmann, T., Laengle, C., Ladle, D. R., & Arber, S. (2005). A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biology, 3(5), e159.

    Article  Google Scholar 

  • Hultborn, H., Lindström, S., & Wigström, H. (1979). On the function of recurrent inhibition in the spinal cord. Experimental Brain Research, 37, 399–403.

    Article  Google Scholar 

  • Hultborn, H., & Pierrot-Deseilligny, E. (1979). Input-output relations in the pathway of recurrent inhibition to motoneurones in the cat. The Journal of Physiology, 297(1), 267–287.

    Article  Google Scholar 

  • Ladle, D. R., Pecho-Vrieseling, E., & Arber, S. (2007). Assembly of motor circuits in the spinal cord: Driven to function by genetic and experience-dependent mechanisms. Neuron, 56(2), 270–283.

    Article  Google Scholar 

  • Maltenfort, M. G., Heckman, C., & Rymer, W. Z. (1998). Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: A simulation study. Journal of Neurophysiology, 80(1), 309–323.

    Article  Google Scholar 

  • Mattei, B., Schmied, A., Mazzocchio, R., Decchi, B., Rossi, A., & Vedel, J.-P. (2003). Pharmacologically induced enhancement of recurrent inhibition in humans: Effects on motoneurone discharge patterns. The Journal of Physiology, 548(2), 615–629.

    Article  Google Scholar 

  • Matthews, P. (1997). Spindle and motoneuronal contributions to the phase advance of the human stretch reflex and the reduction of tremor. The Journal of Physiology, 498(1), 249–275.

    Article  Google Scholar 

  • McGregor, R. J. (1987). Neural and brain modelling. Academic.

    Google Scholar 

  • Myers, C. P., Lewcock, J. W., Hanson, M. G., Gosgnach, S., Aimone, J. B., Gage, F. H., Lee, K.-F., Landmesser, L. T., & Pfaff, S. L. (2005). Cholinergic input is required during embryonic development to mediate proper assembly of spinal locomotor circuits. Neuron, 46(1), 37–49.

    Article  Google Scholar 

  • Olbrich, H.-G., & Braak, H. (1985). Ratio of pyramidal cells versus non-pyramidal cells in sector ca1 of the human Ammon’s horn. Anatomy and Embryology, 173(1), 105–110.

    Article  Google Scholar 

  • Renshaw, B. (1946). Central effects of centripetal impulses in axons of spinal ventral roots. Journal of Neurophysiology, 9(3), 191–204.

    Article  Google Scholar 

  • Sapir, T., Geiman, E. J., Wang, Z., Velasquez, T., Mitsui, S., Yoshihara, Y., Frank, E., Alvarez, F. J., & Goulding, M. (2004). Pax6 and engrailed 1 regulate two distinct aspects of Renshaw cell development. Journal of Neuroscience, 24(5), 1255–1264.

    Article  Google Scholar 

  • Scain, A.-L., Le Corronc, H., Allain, A.-E., Muller, E., Rigo, J.-M., Meyrand, P., Branchereau, P., & Legendre, P. (2010). Glycine release from radial cells modulates the spontaneous activity and its propagation during early spinal cord development. Journal of Neuroscience, 30(1), 390–403.

    Article  Google Scholar 

  • Siembab, V. C., Smith, C. A., Zagoraiou, L., Berrocal, M. C., Mentis, G. Z., and Alvarez, F. J. (2010). Target selection of proprioceptive and motor axon synapses on neonatal v1-derived ia inhibitory interneurons and Renshaw cells. Journal of Comparative Neurology, 518(23), 4675–4701.

    Article  Google Scholar 

  • Stein, R., & OÄźuztöreli, M. (1984). Modification of muscle responses by spinal circuitry. Neuroscience, 11(1), 231–240.

    Article  Google Scholar 

  • Thomas, R., & Wilson, V. (1965). Precise localization of Renshaw cells with a new marking technique. Nature, 206(4980), 211–213.

    Article  Google Scholar 

  • Uchiyama, T., & Windhorst, U. (2007). Effects of spinal recurrent inhibition on motoneuron short-term synchronization. Biological Cybernetics, 96(6), 561–575.

    Article  Google Scholar 

  • Van Keulen, L. (1981). Autogenetic recurrent inhibition of individual spinal motoneurones of the cat. Neuroscience Letters, 21(3), 297–300.

    Article  Google Scholar 

  • Vaughn, J. E., Henrikson, C. K., Chernow, C. R., Grieshaber, J. A., & Wimer, C. C. (1975). Genetically-associated variations in the development of reflex movements and synaptic junctions within an early reflex pathway of mouse spinal cord. Journal of Comparative Neurology, 161(4), 541–553.

    Article  Google Scholar 

  • Walmsley, B., & Tracey, D. J. (1981). An intracellular study of Renshaw cells. Brain research, 223(1), 170–175.

    Article  Google Scholar 

  • Wani, A. M., & Guha, S. K. (1975). A model for gradation of tension-recruitment and rate coding. Medical and Biological Engineering, 13, 870–875.

    Article  Google Scholar 

  • Williams, E. R., & Baker, S. N. (2009). Renshaw cell recurrent inhibition improves physiological tremor by reducing corticomuscular coupling at 10 Hz. Journal of Neuroscience, 29(20), 6616–6624.

    Article  Google Scholar 

  • Wilson, V. J., & Talbot, W. H. (1963). Integration at an inhibitory interneurone: Inhibition of Renshaw cells. Nature, 200(4913), 1325–1327.

    Article  Google Scholar 

  • Windhorst, U. (1996). On the role of recurrent inhibitory feedback in motor control. Progress in Neurobiology, 49(6), 517–587.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ansari, S. (2024). Simulation Model for Investigation on Recurrent Feedback Inhibition By Renshaw Cells. In: Singh, R.E. (eds) Motion Analysis of Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-52977-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52977-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52976-4

  • Online ISBN: 978-3-031-52977-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics