Skip to main content

Neuromuscular Behavior of Asymmetric Gait in Transfemoral Amputees

  • Chapter
  • First Online:
Motion Analysis of Biological Systems

Abstract

The first chapter examines neuromuscular and neuromechanical strategies in individuals with TFA, using the muscle synergy theory. This condition significantly limits movement, even with prosthetic use, necessitating an understanding of the effect of biomechanical constraints on muscle coordination during walking. The current literature lacks insights into whether TFAs exhibit muscle synergy alterations and whether these changes originate from centrally and/or peripherally organized circuits. The chapter addresses these gaps by providing theoretical evidence and proposing associated neural mechanisms for altered muscle synergies, which are crucial for postural stability in TFA. Overall, the chapter underscores the pivotal role of altered muscle synergies in stability maintenance and highlights how increased biomechanical constraints influence afferent drives among TFAs, leading to their alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd, A. T., Singh, R. E., Iqbal, K., & White, G. (2021). A perspective on muscle synergies and different theories related to their adaptation. Biomechanics, 1(2), 253–263.

    Article  Google Scholar 

  • Bartos, M., Manor, Y., Nadim, F., Marder, E., & Nusbaum, M. P. (1999). Coordination of fast and slow rhythmic neuronal circuits. Journal of Neuroscience, 19(15), 6650–6660.

    Article  Google Scholar 

  • Bernstein, N. (1966). The co-ordination and regulation of movements. In The co-ordination and regulation of movements.

    Google Scholar 

  • Biel, A. (2019). Trail guide to movement: Building the body in motion. Books of Discovery.

    Google Scholar 

  • Bizzi, E., & Cheung, V. C. (2013). The neural origin of muscle synergies. Frontiers in Computational Neuroscience, 7, 51.

    Article  Google Scholar 

  • Bostan, A. C., Dum, R. P., & Strick, P. L. (2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17(5), 241–254.

    Article  Google Scholar 

  • Brandt, A., & Huang, H. H. (2019). Effects of extended stance time on a powered knee prosthesis and gait symmetry on the lateral control of balance during walking in individuals with unilateral amputation. Journal of Neuroengineering and Rehabilitation, 16(1), 1–11.

    Google Scholar 

  • BruceBlaus @ Wikimediacommons. (2023). Foot prosthesis wearing prosthesis above knee. Licensed under CC BY-SA 4.0.

    Google Scholar 

  • Cazalets, J., Sqalli-Houssaini, Y., & Clarac, F. (1992). Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. The Journal of Physiology, 455(1), 187–204.

    Article  Google Scholar 

  • Cheung, V. C., d’Avella, A., & Bizzi, E. (2009). Adjustments of motor pattern for load compensation via modulated activations of muscle synergies during natural behaviors. Journal of Neurophysiology, 101(3), 1235–1257.

    Article  Google Scholar 

  • d’Avella, A., Saltiel, P., & Bizzi, E. (2003). Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neuroscience, 6(3), 300–308.

    Article  Google Scholar 

  • De Marchis, C., Ranaldi, S., Serrao, M., Ranavolo, A., Draicchio, F., Lacquaniti, F., & Conforto, S. (2019). Modular motor control of the sound limb in gait of people with trans-femoral amputation. Journal of Neuroengineering and Rehabilitation, 16, 1–11.

    Article  Google Scholar 

  • Dominici, N., Ivanenko, Y. P., Cappellini, G., d’Avella, A., Mondì, V., Cicchese, M., Fabiano, A., Silei, T., Di Paolo, A., Giannini, C., et al. (2011). Locomotor primitives in newborn babies and their development. Science, 334(6058), 997–999.

    Article  Google Scholar 

  • Duysens, J., & Van de Crommert, H. W. (1998). Neural control of locomotion; part 1: The central pattern generator from cats to humans. Gait & Posture, 7(2), 131–141.

    Article  Google Scholar 

  • Ebied, A., Kinney-Lang, E., Spyrou, L., & Escudero, J. (2018). Evaluation of matrix factorisation approaches for muscle synergy extraction. Medical Engineering & Physics, 57, 51–60.

    Article  Google Scholar 

  • Ellis, R. G., Howard, K. C., & Kram, R. (2013). The metabolic and mechanical costs of step time asymmetry in walking. Proceedings of the Royal Society B: Biological Sciences, 280(1756), 20122784.

    Article  Google Scholar 

  • Frère, J., & Hug, F. (2012). Between-subject variability of muscle synergies during a complex motor skill. Frontiers in Computational Neuroscience, 6, 99.

    Article  Google Scholar 

  • Gaunaurd, I., Gailey, R., Hafner, B. J., Gomez-Marin, O., & Kirk-Sanchez, N. (2011). Postural asymmetries in transfemoral amputees. Prosthetics and Orthotics International, 35(2), 171–180.

    Article  Google Scholar 

  • George, J., Navale, S. M., Nageeb, E. M., Curtis, G. L., Klika, A. K., Barsoum, W. K., Mont, M. A., & Higuera, C. A. (2018). Etiology of above-knee amputations in the united states: Is periprosthetic joint infection an emerging cause? Clinical Orthopaedics and Related Research, 476(10), 1951.

    Article  Google Scholar 

  • Gervasio, S., Farina, D., Sinkjær, T., & Mrachacz-Kersting, N. (2013). Crossed reflex reversal during human locomotion. Journal of Neurophysiology, 109(9), 2335–2344.

    Article  Google Scholar 

  • Gottschalk, F., & Stills, M. (1994). The biomechanics of trans-femoral amputation. Prosthetics and Orthotics International, 18(1), 12–17.

    Article  Google Scholar 

  • Grillner, S. (2021). The execution of movement: A spinal affair. Journal of Neurophysiology, 125(2), 693–698.

    Article  Google Scholar 

  • Grillner, S., & El Manira, A. (2020). Current principles of motor control, with special reference to vertebrate locomotion. Physiological Reviews, 100(1), 271–320.

    Article  Google Scholar 

  • Heckman, E. L., & Doe, C. Q. (2021). Establishment and maintenance of neural circuit architecture. Journal of Neuroscience, 41(6), 1119–1129.

    Article  Google Scholar 

  • IJmker, T., Lamoth, C. J., Houdijk, H., van der Woude, L. H., & Beek, P. J. (2014). Postural threat during walking: Effects on energy cost and accompanying gait changes. Journal of Neuroengineering and Rehabilitation, 11(1), 1–10.

    Article  Google Scholar 

  • Ivanenko, Y. P., Poppele, R. E., & Lacquaniti, F. (2004). Five basic muscle activation patterns account for muscle activity during human locomotion. The Journal of Physiology, 556(1), 267–282.

    Article  Google Scholar 

  • Jaegers, S. M., Vos, L. D., Rispens, P., & Hof, A. L. (1993). The relationship between comfortable and most metabolically efficient walking speed in persons with unilateral above-knee amputation. Archives of Physical Medicine and Rehabilitation, 74(5), 521–525.

    Article  Google Scholar 

  • Jinko Cruz @ Wikimediacommons. (2023). Lego city 10159 lego city airport. Licensed under CC BY 2.0.

    Google Scholar 

  • Katz, P. S. (2016). Evolution of central pattern generators and rhythmic behaviours. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1685), 20150057.

    Article  Google Scholar 

  • Kerkman, J. N., Bekius, A., Boonstra, T. W., Daffertshofer, A., & Dominici, N. (2020). Muscle synergies and coherence networks reflect different modes of coordination during walking. Frontiers in Physiology, 11, 751.

    Article  Google Scholar 

  • Kieliba, P., Tropea, P., Pirondini, E., Coscia, M., Micera, S., & Artoni, F. (2018). How are muscle synergies affected by electromyography pre-processing? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(4), 882–893.

    Article  Google Scholar 

  • Koziol, L. F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., Ito, M., Manto, M., Marvel, C., Parker, K., et al. (2014). Consensus paper: The cerebellum’s role in movement and cognition. The Cerebellum, 13, 151–177.

    Article  Google Scholar 

  • Latash, M. L. (2010). Motor synergies and the equilibrium-point hypothesis. Motor Control, 14(3), 294–322.

    Article  MathSciNet  Google Scholar 

  • Marder, E., & Bucher, D. (2001). Central pattern generators and the control of rhythmic movements. Current Biology, 11(23), R986–R996.

    Article  Google Scholar 

  • Maton, B., & Bouisset, S. (1977). The distribution of activity among the muscles of a single group during isometric contraction. European Journal of Applied Physiology and Occupational Physiology, 37(2), 101–109.

    Article  Google Scholar 

  • Mehryar, P., Shourijeh, M. S., Rezaeian, T., Khandan, A. R., Messenger, N., O’Connor, R., Farahmand, F., & Dehghani-Sanij, A. (2020). Differences in muscle synergies between healthy subjects and transfemoral amputees during normal transient-state walking speed. Gait & Posture, 76, 98–103.

    Article  Google Scholar 

  • Miles, G. B., & Sillar, K. T. (2011). Neuromodulation of vertebrate locomotor control networks. Physiology, 26(6), 393–411.

    Article  Google Scholar 

  • OpenClips @ Wikimediacommons. Lego brick. Licensed under CC0.

    Google Scholar 

  • Rasool, G., Iqbal, K., Bouaynaya, N., & White, G. (2015). Real-time task discrimination for myoelectric control employing task-specific muscle synergies. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(1), 98–108.

    Article  Google Scholar 

  • Rezer, E., & Moulins, M. (1983). Expression of the crustacean pyloric pattern generator in the intact animal. Journal of Comparative Physiology, 153, 17–28.

    Article  Google Scholar 

  • Rimini, D., Agostini, V., & Knaflitz, M. (2017). Intra-subject consistency during locomotion: Similarity in shared and subject-specific muscle synergies. Frontiers in Human Neuroscience, 11, 586.

    Article  Google Scholar 

  • Saltiel, P., Tresch, M. C., & Bizzi, E. (1998). Spinal cord modular organization and rhythm generation: An NMDA iontophoretic study in the frog. Journal of Neurophysiology, 80(5), 2323–2339.

    Article  Google Scholar 

  • Sanders, J. E., & Fatone, S. (2011). Residual limb volume change: Systematic review of measurement and management. The Journal of Rehabilitation Research and Development, 48(8), 949–986.

    Article  Google Scholar 

  • Santuz, A., Ekizos, A., Kunimasa, Y., Kijima, K., Ishikawa, M., & Arampatzis, A. (2020). Lower complexity of motor primitives ensures robust control of high-speed human locomotion. Heliyon, 6(10), e05377.

    Article  Google Scholar 

  • Severini, G., Koenig, A., Adans-Dester, C., Cajigas, I., Cheung, V. C., & Bonato, P. (2020). Robot-driven locomotor perturbations reveal synergy-mediated, context-dependent feedforward and feedback mechanisms of adaptation. Scientific Reports, 10(1), 5104.

    Article  Google Scholar 

  • Shuman, B. R., Schwartz, M. H., & Steele, K. M. (2017). Electromyography data processing impacts muscle synergies during gait for unimpaired children and children with cerebral palsy. Frontiers in Computational Neuroscience, 11, 50.

    Article  Google Scholar 

  • Singh, R. E., Iqbal, K., White, G., & Hutchinson, T. E. (2018). A systematic review on muscle synergies: From building blocks of motor behavior to a neurorehabilitation tool. Applied Bionics and Biomechanics, 2018, 3615368.

    Article  Google Scholar 

  • Singh, R. E., Iqbal, K., Ullah, S., Alazzawi, A., & White, G. (2019). Gait phase discrimination during kinematically constrained walking on slackline. In 2019 IEEE 15th International Conference on Control and Automation (ICCA) (pp. 782–787). IEEE.

    Google Scholar 

  • Singh, R. E., Iqbal, K., & White, G. (2020a). Proficiency-based recruitment of muscle synergies in a highly perturbed walking task (slackline). Engineering Reports, 2(10), e12253.

    Article  Google Scholar 

  • Singh, R. E., White, G., Delis, I., & Iqbal, K. (2020b). Alteration of muscle synergy structure while walking under increased postural constraints. Cognitive Computation and Systems, 2(2), 50–56.

    Article  Google Scholar 

  • Sombric, C. J., Calvert, J. S., & Torres-Oviedo, G. (2019). Large propulsion demands increase locomotor adaptation at the expense of step length symmetry. Frontiers in Physiology, 10, 60.

    Article  Google Scholar 

  • Taheri, A., & Karimi, M. T. (2012). Evaluation of the gait performance of above-knee amputees while walking with 3R20 and 3R15 knee joints. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 17(3), 258.

    Google Scholar 

  • Takei, T., Confais, J., Tomatsu, S., Oya, T., & Seki, K. (2017). Neural basis for hand muscle synergies in the primate spinal cord. Proceedings of the National Academy of Sciences, 114(32), 8643–8648.

    Article  Google Scholar 

  • Thoroughman, K. A., & Shadmehr, R. (1999). Electromyographic correlates of learning an internal model of reaching movements. Journal of Neuroscience, 19(19), 8573–8588.

    Article  Google Scholar 

  • Ting, L., Kautz, S., Brown, D., Van der Loos, H., & Zajac, F. (1998). Bilateral integration of sensorimotor signals during pedaling. Annals of the New York Academy of Sciences, 860(1), 513–516.

    Article  Google Scholar 

  • Torres-Oviedo, G., & Ting, L. H. (2010). Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. Journal of Neurophysiology, 103(6), 3084–3098.

    Article  Google Scholar 

  • Tresch, M. C., Cheung, V. C., & d’Avella, A. (2006). Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets. Journal of Neurophysiology, 95(4), 2199–2212.

    Article  Google Scholar 

  • Vrieling, A. H., Van Keeken, H., Schoppen, T., Otten, E., Halbertsma, J., Hof, A., & Postema, K. (2008). Gait initiation in lower limb amputees. Gait & Posture, 27(3), 423–430.

    Article  Google Scholar 

  • Wentink, E. C., Prinsen, E. C., Rietman, J. S., & Veltink, P. H. (2013). Comparison of muscle activity patterns of transfemoral amputees and control subjects during walking. Journal of Neuroengineering and Rehabilitation, 10(1), 1–11.

    Article  Google Scholar 

  • Yang, J. F., & Stein, R. B. (1990). Phase-dependent reflex reversal in human leg muscles during walking. Journal of Neurophysiology, 63(5), 1109–1117.

    Article  Google Scholar 

  • Yang, Q., Logan, D., & Giszter, S. F. (2019). Motor primitives are determined in early development and are then robustly conserved into adulthood. Proceedings of the National Academy of Sciences, 116(24), 12025–12034.

    Article  Google Scholar 

  • Yokoyama, H., Kaneko, N., Ogawa, T., Kawashima, N., Watanabe, K., & Nakazawa, K. (2019). Cortical correlates of locomotor muscle synergy activation in humans: An electroencephalographic decoding study. IScience, 15, 623–639.

    Article  Google Scholar 

  • Zehr, E. P., Balter, J. E., Ferris, D. P., Hundza, S. R., Loadman, P. M., & Stoloff, R. H. (2007). Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks. The Journal of Physiology, 582(1), 209–227.

    Article  Google Scholar 

  • Zehr, E. P., Barss, T. S., Dragert, K., Frigon, A., Vasudevan, E. V., Haridas, C., Hundza, S., Kaupp, C., Klarner, T., Klimstra, M., et al. (2016). Neuromechanical interactions between the limbs during human locomotion: An evolutionary perspective with translation to rehabilitation. Experimental Brain Research, 234, 3059–3081.

    Article  Google Scholar 

  • Zhao, H., Horn, J., Reher, J., Paredes, V., & Ames, A. D. (2017). First steps toward translating robotic walking to prostheses: A nonlinear optimization based control approach. Autonomous Robots, 41, 725–742.

    Article  Google Scholar 

  • Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the prevalence of limb loss in the united states: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 89(3), 422–429.

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful for Northwestern College, Orange City, the faculty development grant, and chatGPT for improving the flow of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Emanuel Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R.E., Hutchinson, F., White, G., Hutchinson, T.E. (2024). Neuromuscular Behavior of Asymmetric Gait in Transfemoral Amputees. In: Singh, R.E. (eds) Motion Analysis of Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-52977-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52977-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52976-4

  • Online ISBN: 978-3-031-52977-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics