Abstract
In the design of an identity-based encryption (IBE) scheme, the primary security assumptions center around quadratic residues, bilinear mappings, and lattices. Among these approaches, one of the most intriguing is introduced by Clifford Cocks and is based on quadratic residues. However, this scheme has a significant drawback: a large ciphertext to plaintext ratio. A different approach is taken by Zhao et al., who design an IBE still based on quadratic residues, but with an encryption process reminiscent of the Goldwasser-Micali cryptosystem. In the following pages, we will introduce an elementary method to accelerate Cocks’ encryption process and adapt a space-efficient encryption technique for both Cocks’ and Zhao et al.’s cryptosystems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This assumption states that an adversary trying to decide if a random element is from \(J_n\setminus QR_n\) or \(QR_n\) has a negligible success probability.
References
The GNU Multiple Precision Arithmetic Library. https://gmplib.org/
Ateniese, G., Gasti, P.: Universally anonymous IBE based on the quadratic residuosity assumption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 32–47. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7_3
Barker, E.: NIST SP800-57 Recommendation for Key Management, Part 1: General. Technical report, NIST (2016)
Barua, R., Jhanwar, M.P.: On the number of solutions of the equation \({R}x^2+{S}y^2=1 (\text{mod} N)\). Indian J. Stat. 72-A, 226–236 (2010)
Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_30
Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13
Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS 2007, pp. 647–657. IEEE Computer Society (2007)
Brent, R.P., Zimmermann, P.: An \(O(M(n) {\log }n)\) algorithm for the Jacobi symbol. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS, vol. 6197, pp. 83–95. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14518-6_10
Clear, M., Hughes, A., Tewari, H.: Homomorphic encryption with access policies: characterization and new constructions. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 61–87. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7_4
Clear, M., Tewari, H., McGoldrick, C.: Anonymous IBE from quadratic residuosity with improved performance. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 377–397. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_23
Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_32
Cotan, P., Teşeleanu, G.: Generalized Galbraith’s test: characterization and applications to anonymous IBE schemes. Mathematics 9(11), 1184 (2021)
Elashry, I., Mu, Y., Susilo, W.: An efficient variant of Boneh-Gentry-Hamburg’s identity-based encryption without pairing. In: Rhee, K.-H., Yi, J.H. (eds.) WISA 2014. LNCS, vol. 8909, pp. 257–268. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15087-1_20
Elashry, I., Mu, Y., Susilo, W.: Jhanwar-Barua’s identity-based encryption revisited. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp. 271–284. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11698-3_21
Goldwasser, S.: Cocks’ IBE scheme, bilinear maps. MIT Lecture Notes: “6876: Advanced Cryptography” (2004)
Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28, 270–299 (1984)
Harvey, D., Van Der Hoeven, J.: Integer multiplication in time \(\cal{O} (n\log n)\). Ann. Math. 193(2), 563–617 (2021)
Jhanwar, M.P., Barua, R.: A variant of Boneh-Gentry-Hamburg’s pairing-free identity based encryption scheme. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 314–331. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01440-6_25
Joye, M.: Identity-based cryptosystems and quadratic residuosity. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 225–254. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_9
Nica, A.M., Tiplea, F.L.: On anonymization of cocks’ identity-based encryption scheme. Comput. Sci. J. Moldova 81(3), 283–298 (2019)
Schipor, G.A.: On the anonymization of cocks IBE scheme. In: Ors, B., Preneel, B. (eds.) BalkanCryptSec 2014. LNCS, vol. 9024, pp. 194–202. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21356-9_13
Schipor, A.G.: On the security of Jhanwar-Barua identity-based encryption scheme. In: Lanet, J.-L., Toma, C. (eds.) SECITC 2018. LNCS, vol. 11359, pp. 368–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12942-2_28
Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5
Zhao, X., Cao, Z., Dong, X., Zheng, J.: Anonymous IBE from quadratic residuosity with fast encryption. In: Susilo, W., Deng, R.H., Guo, F., Li, Y., Intan, R. (eds.) ISC 2020. LNCS, vol. 12472, pp. 3–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62974-8_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cotan, P., Teşeleanu, G. (2024). Elementary Remarks on Some Quadratic Based Identity Based Encryption Schemes. In: Manulis, M., Maimuţ, D., Teşeleanu, G. (eds) Innovative Security Solutions for Information Technology and Communications. SecITC 2023. Lecture Notes in Computer Science, vol 14534. Springer, Cham. https://doi.org/10.1007/978-3-031-52947-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-52947-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52946-7
Online ISBN: 978-3-031-52947-4
eBook Packages: Computer ScienceComputer Science (R0)