Skip to main content

Überblick über die Klassifizierung von EEG-Signalen mit maschinellem Lernen und Deep-Learning-Techniken

  • Chapter
  • First Online:
Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML

Zusammenfassung

Elektroenzephalographie-Signale (EEG-Signale) werden weit verbreitet für die Prognose und Diagnose mehrerer Störungen verwendet, wie zum Beispiel Epilepsie, Schizophrenie, Parkinson-Krankheit usw. Es wurde in der Literatur gezeigt, dass EEG-Signale mit maschinellen Lernverfahren funktionieren. Sie erfordern jedoch eine manuelle Extraktion von Merkmalen im Voraus, die von Datensatz zu Datensatz oder je nach Krankheitsanwendung variieren können. Tiefes Lernen hat andererseits die Fähigkeit, die rohen Signale zu verarbeiten und Daten zu klassifizieren, ohne dass Fachwissen oder manuell extrahierte Merkmale erforderlich sind, es fehlt jedoch ein gutes Verständnis und Interpretierbarkeit. In diesem Kapitel werden verschiedene Techniken des maschinellen Lernens diskutiert, einschließlich Methoden zur Extraktion und Auswahl von Merkmalen aus gefilterten Signalen und zur Klassifizierung dieser ausgewählten Merkmale für klinische Anwendungen. Wir haben auch zwei Fallstudien besprochen, d.h. die Erkennung von Epilepsie und Schizophrenie. Diese Fallstudien verwenden eine Architektur, die tiefes Lernen mit traditionellen ML-Techniken kombiniert und deren Ergebnisse vergleicht. Mit diesem hybriden Modell wird eine Genauigkeit von 94,9 % auf der Grundlage von EEG-Signalen von epileptischen und normalen Probanden erreicht, während eine Genauigkeit von 98 % bei der Erkennung von Schizophrenie mit nur drei EEG-Kanälen erreicht wird. Das letztere Ergebnis ist bedeutend, da es mit anderen modernen Techniken vergleichbar ist, während weniger Daten und Rechenleistung benötigt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. J.S. Kumar, P. Bhuvaneswari, Analysis of electroencephalography (EEG) signals and its categorization–a study. Procedia Eng. 38, 2525–2536 (2012). https://doi.org/10.1016/j.proeng.2012.06.298

    Article  Google Scholar 

  2. F. Hassan, Applying Deep Learning Methods for EEG Classification - a Case Study of Epi Lepsy and Schizophrenia (Master Thesis, Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, 2022)

    Google Scholar 

  3. H. Akbulut, S. Güney, H.B. Çotuk, A.D. Duru, Classification of EEG signals using alpha and beta frequency power during voluntary hand movement, in Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), vol. 2019, (2019), S. 1–4. https://doi.org/10.1109/EBBT.2019.8741944

    Chapter  Google Scholar 

  4. N. Jatupaiboon, S. Pan-ngum, P. Israsena, Emotion classification using minimal EEG channels and frequency bands, in The 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE), (2013), S. 21–24. https://doi.org/10.1109/JCSSE.2013.6567313

    Chapter  Google Scholar 

  5. W. Peng, EEG preprocessing and Denoising, in EEG Signal Processing and Feature Extraction, ed. by L. Hu, Z. Zhang, (Springer, Singapore, 2019), S. 71–87. https://doi.org/10.1007/978-981-13-9113-2_5

    Chapter  Google Scholar 

  6. A. Suleiman, A.-B. Suleiman, A.-H. Fatehi, T. A. Fathi, „Features Extraction Techniques of EEG Signal for BCI Applications,“ 2013

    Google Scholar 

  7. P. Tangkraingkij, C. Lursinsap, S. Sanguansintukul, T. Desudchit, Personal identification by EEG using ICA and neural network. 6018, 419–430 (2010). https://doi.org/10.1007/978-3-642-12179-1_35

  8. M.N. Tibdewal, M. Mahadevappa, A.K. Ray, M. Malokar, H.R. Dey, Power line and ocular artifact denoising from EEG using notch filter and wavelet transform, in 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), (2016), S. 1654–1659

    Google Scholar 

  9. E. Maiorana, J. Solé-Casals, P. Campisi, EEG signal preprocessing for biometric recognition. Mach. Vis. Appl. 27, 1–10 (2016). https://doi.org/10.1007/s00138-016-0804-4

    Article  Google Scholar 

  10. A. Zabidi, W. Mansor, Y.K. Lee, C.W.N.F.C.W. Fadzal, Short-time fourier transform analysis of EEG signal generated during imagined writing, in 2012 International Conference on System Engineering and Technology (ICSET), (2012), S. 1–4. https://doi.org/10.1109/ICSEngT.2012.6339284

    Chapter  Google Scholar 

  11. M.A. Sohel, M. Naaz, M.A. Raheem, M.A. Munaaf, Design of discrete time notch filter for biomedical applications, in Devices for Integrated Circuit (DevIC), vol. 2017, (2017), S. 487–490. https://doi.org/10.1109/DEVIC.2017.8073997

    Chapter  Google Scholar 

  12. N.W. Bin, S.A. Awang, C.Y. Fook, L.C. Chin, O.Z. Ying, A study of informative EEG channel and brain region for typing activity. J. Phy. Confer. Series 1372(1), 012008 (2019). https://doi.org/10.1088/1742-6596/1372/1/012008

    Article  Google Scholar 

  13. N. Ghassemi, A. Shoeibi, M. Rouhani, H. Hosseini-Nejad, Epileptic seizures detection in EEG signals using TQWT and ensemble learning, in 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), (2019), S. 403–408. https://doi.org/10.1109/ICCKE48569.2019.8964826

    Chapter  Google Scholar 

  14. N. Ahmadi, Y. Pei, M. Pechenizkiy, Detection of alcoholism based on EEG signals and functional brain network features extraction, in IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), vol. 2017, (2017), S. 179–184. https://doi.org/10.1109/CBMS.2017.46

    Chapter  Google Scholar 

  15. Z. Xue, J. Li, S. Li, B. Wan, Using ICA to remove eye blink and power line artifacts in EEG, in First International Conference on Innovative Computing, Information and Control - Volume I (ICICIC’06), vol. 3, (2006), S. 107–110. https://doi.org/10.1109/ICICIC.2006.543

    Chapter  Google Scholar 

  16. G. Madhale Jadav, J. Lerga, I. Štajduhar, Adaptive filtering and analysis of EEG signals in the time-frequency domain based on the local entropy. EURASIP J. Advanc. Signal Process. 2020(1), 7 (2020). https://doi.org/10.1186/s13634-020-00667-6

    Article  Google Scholar 

  17. T.-P. Jung, C. Humphries, T.-W. Lee, S. Makeig, M. McKeown, V. Iragui, T.J. Sejnowski, Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37(2), 163–178 (2000)

    Article  Google Scholar 

  18. Y. Xie, S. Oniga, A review of processing methods and classification algorithm for EEG signal. Carpathian J. Electron. Computer Eng. 13(1), 23–29 (2020). https://doi.org/10.2478/cjece-2020-0004

    Article  Google Scholar 

  19. A. Subasi, M. Ismail Gursoy, EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), 8659–8666 (2010). https://doi.org/10.1016/j.eswa.2010.06.065

    Article  Google Scholar 

  20. I. Winkler, S. Haufe, M. Tangermann, Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals. Behavioral Brain Funct. 7(1), 30 (2011). https://doi.org/10.1186/1744-9081-7-30

    Article  Google Scholar 

  21. N. Mammone, F. La Foresta, F.C. Morabito, Automatic artifact rejection from multichannel scalp EEG by wavelet ICA. IEEE Sensors J. 12(3), 533–542 (2012). https://doi.org/10.1109/JSEN.2011.2115236

    Article  Google Scholar 

  22. T. Radüntz, J. Scouten, O. Hochmuth, B. Meffert, EEG artifact elimination by extraction of ICA-component features using image processing algorithms. J. Neurosci. Methods 243, 84–93 (2015). https://doi.org/10.1016/j.jneumeth.2015.01.030

    Article  Google Scholar 

  23. C.Y. Sai, N. Mokhtar, H. Arof, P. Cumming, M. Iwahashi, Automated classification and removal of EEG artifacts with SVM and wavelet-ICA. IEEE J. Biomed. Health Inform. 22(3), 664–670 (2018). https://doi.org/10.1109/JBHI.2017.2723420

    Article  Google Scholar 

  24. A. Cimmino, A. Ciaramella, G. Dezio, P.J. Salma, Non-linear PCA neural network for EEG noise reduction in brain-computer Interface, in Progresses in Artificial Intelligence and Neural Systems, ed. by A. Esposito, M. Faundez-Zanuy, F. C. Morabito, E. Pasero, (Springer, Singapore, 2021), S. 405–413. https://doi.org/10.1007/978-981-15-5093-5_36

    Chapter  Google Scholar 

  25. S. Casarotto, A.M. Bianchi, S. Cerutti, G.A. Chiarenza, Principal component analysis for reduction of ocular artefacts in event-related potentials of normal and dyslexic children. Clin. Neurophysiol. 115(3), 609–619 (2004). https://doi.org/10.1016/j.clinph.2003.10.018

    Article  Google Scholar 

  26. K.I. Molla, T. Tanaka, T.M. Rutkowski, A. Cichocki, Separation of EOG artifacts from EEG signals using bivariate EMD, in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, (2010), S. 562–565. https://doi.org/10.1109/ICASSP.2010.5495594

    Chapter  Google Scholar 

  27. M. Shahbakhti, V. Khalili, G. Kamaee, Removal of blink from EEG by Empirical Mode Decomposition (EMD), in The 5th 2012 Biomedical Engineering International Conference, (2012), S. 1–5. https://doi.org/10.1109/BMEiCon.2012.6465451

    Chapter  Google Scholar 

  28. R. Patel, S. Sengottuvel, M.P. Janawadkar, K. Gireesan, T.S. Radhakrishnan, N. Mariyappa, Ocular artifact suppression from EEG using ensemble empirical mode decomposition with principal component analysis. Computers Elect. Eng. 54, 78–86 (2016). https://doi.org/10.1016/j.compeleceng.2015.08.019

    Article  Google Scholar 

  29. A. Subasi, E. Erçelebi, Classification of EEG signals using neural network and logistic regression. Comput. Methods Prog. Biomed. 78(2), 87–99 (2005). https://doi.org/10.1016/j.cmpb.2004.10.009

    Article  MATH  Google Scholar 

  30. R. Djemal, K. AlSharabi, S. Ibrahim, A. Alsuwailem, EEG-based computer aided diagnosis of autism Spectrum disorder using wavelet, entropy, and ANN. Biomed. Res. Int. 2017, 1–9 (2017). https://doi.org/10.1155/2017/9816591

    Article  Google Scholar 

  31. K. Bnou, S. Raghay, A. Hakim, A wavelet denoising approach based on unsupervised learning model. EURASIP J. Advan. Signal Process. 2020(1), 1–26 (2020). https://doi.org/10.1186/s13634-020-00693-4

    Article  Google Scholar 

  32. C.I. Salis, A.E. Malissovas, P.A. Bizopoulos, A.T. Tzallas, P.A. Angelidis, D.G. Tsalikakis, Denoising simulated EEG signals: A comparative study of EMD, wavelet transform and Kalman filter, in 13th IEEE International Conference on BioInformatics and BioEngineering, (2013), S. 1–4. https://doi.org/10.1109/BIBE.2013.6701613

    Chapter  Google Scholar 

  33. Q. Zhao, B. Hu, Y. Shi, Y. Li, P. Moore, M. Sun, H. Peng, Automatic identification and removal of ocular artifacts in EEG—Improved adaptive predictor filtering for portable applications. IEEE Trans. Nanobioscience 13(2), 109–117 (2014). https://doi.org/10.1109/TNB.2014.2316811

    Article  Google Scholar 

  34. H.U. Amin, A.S. Malik, R.F. Ahmad, N. Badruddin, N. Kamel, M. Hussain, W. Chooi, Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas. Phys. Eng. Sci. Med. 38(1), 139–149 (2015). https://doi.org/10.1007/s13246-015-0333-x

    Article  Google Scholar 

  35. M.K. Delimayanti, B. Purnama, N.G. Nguyen, M.R. Faisal, K.R. Mahmudah, F. Indriani, M. Kubo, K. Satou, Classification of brainwaves for sleep stages by high-dimensional FFT features from EEG signals. Appl. Sci. 10(5), 5 (2020). https://doi.org/10.3390/app10051797

    Article  Google Scholar 

  36. M. Rashid, N. Sulaiman, M. Mustafa, S. Khatun, B.S. Bari, The Classification of EEG signal using different machine learning techniques for BCI application, in Robot Intelligence Technology and Applications, (2019), S. 207–221. https://doi.org/10.1007/978-981-13-7780-8_17

    Chapter  Google Scholar 

  37. Y. Mohan, S.S. Chee, D.K.P. Xin, L.P. Foong, Artificial neural network for classification of depressive and normal in EEG, in 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), (2016), S. 286–290. https://doi.org/10.1109/IECBES.2016.7843459

    Chapter  Google Scholar 

  38. R. Ramos-Aguilar, J.A. Olvera-López, I. Olmos-Pineda, S. Sánchez-Urrieta, Feature extraction from EEG spectrograms for epileptic seizure detection. Pattern Recogn. Lett. 133, 202–209 (2020). https://doi.org/10.1016/j.patrec.2020.03.006

    Article  Google Scholar 

  39. R. Upadhyay, P.K. Padhy, P.K. Kankar, Alcoholism diagnosis from EEG signals using continuous wavelet transform, in 2014 Annual IEEE India Conference (INDICON), (2014), S. 1–5. https://doi.org/10.1109/INDICON.2014.7030476

    Chapter  Google Scholar 

  40. W. Zhao, W. Zhao, W. Wang, X. Jiang, X. Zhang, X. Peng, B. Zhang, G. Zhang, A novel deep neural network for robust detection of seizures using EEG signals. Comput. Math. Methods Med. 2020, 1–9 (2020). https://doi.org/10.1155/2020/9689821

    Article  Google Scholar 

  41. S.M. Qaisar, S.F. Hussain, Effective epileptic seizure detection by using level-crossing EEG sampling sub-bands statistical features selection and machine learning for mobile healthcare. Comput. Methods Prog. Biomed. 203, 106034 (2021). https://doi.org/10.1016/j.cmpb.2021.106034

    Article  Google Scholar 

  42. H. Choubey, A. Pandey, A combination of statistical parameters for the detection of epilepsy and EEG classification using ANN and KNN classifier. SIViP 15(3), 475–483 (2021). https://doi.org/10.1007/s11760-020-01767-4

    Article  Google Scholar 

  43. S. Mian Qaisar, S. Fawad Hussain, Arrhythmia diagnosis by using level-crossing ECG sampling and sub-bands features extraction for mobile healthcare. Sensors 20(8), 8 (2020). https://doi.org/10.3390/s20082252

    Article  Google Scholar 

  44. V. Vimala, K. Ramar, M. Ettappan, An intelligent sleep apnea classification system based on EEG signals. J. Med. Sys. 43(2), 36 (2019). https://doi.org/10.1007/s10916-018-1146-8

    Article  Google Scholar 

  45. M.Y. Gokhale, D.K. Khanduja, Time domain signal analysis using wavelet packet decomposition approach. Inter. J. Communicat. Network Syst. Sci. 3(3), 3 (2010). https://doi.org/10.4236/ijcns.2010.33041

    Article  Google Scholar 

  46. W. Ting, Y. Guo-zheng, Y. Bang-hua, S. Hong, EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement 41(6), 618–625 (2008). https://doi.org/10.1016/j.measurement.2007.07.007

    Article  Google Scholar 

  47. A.R. Hidalgo-Muñoz, M.M. López, I.M. Santos, A.T. Pereira, M. Vázquez-Marrufo, A. Galvao-Carmona, A.M. Tomé, Application of SVM-RFE on EEG signals for detecting the most relevant scalp regions linked to affective valence processing. Expert Syst. Appl. 40(6), 2102–2108 (2013). https://doi.org/10.1016/j.eswa.2012.10.013

    Article  Google Scholar 

  48. N. Roy, S. Aktar, M. Ahamad, M.A. Moni, A machine learning model to recognise human emotions using electroencephalogram, in 2021 5th International Conference on Electrical Information and Communication Technology (EICT), (2021), S. 1–6. https://doi.org/10.1109/EICT54103.2021.9733675

    Chapter  Google Scholar 

  49. S. Fawad Hussain, S. Mian Qaisar, Epileptic seizure classification using level-crossing EEG sampling and ensemble of sub-problems classifier. Expert Syst. Appl. 191, 116356 (2022). https://doi.org/10.1016/j.eswa.2021.116356

    Article  Google Scholar 

  50. S. Mian Qaisar, S.F. Hussain, An Effective Arrhythmia Classification Via ECG Signal Subsampling and Mutual Information Based Subbands Statistical Features Selection (J. Ambient. Intell. Human Comput., May, 2021), S. 1–15. https://doi.org/10.1007/s12652-021-03275-w

    Book  Google Scholar 

  51. S.F. Hussain, H.Z.-U.-D. Babar, A. Khalil, R.M. Jillani, M. Hanif, K. Khurshid, A fast non-redundant feature selection technique for text data. IEEE Access 8, 181763–181781 (2020). https://doi.org/10.1109/ACCESS.2020.3028469

    Article  Google Scholar 

  52. S.F. Hussain, F. Shahzadi, B. Munir, Constrained Class-Wise Feature Selection (CCFS), vol 13 (Internat. J. Mac. Learn. Cybernet., Jun., 2022), S. 3211–3224. https://doi.org/10.1007/s13042-022-01589-5

    Book  Google Scholar 

  53. A.R. Subhani, W. Mumtaz, N. Kamil, N.M. Saad, N. Nandagopal, A.S. Malik, MRMR based feature selection for the classification of stress using EEG, in 2017 Eleventh International Conference on Sensing Technology (ICST), (2017), S. 1–4. https://doi.org/10.1109/ICSensT.2017.8304499

    Chapter  Google Scholar 

  54. M.R. Hasan, M.I. Ibrahimy, S.M.A. Motakabber, S. Shahid, Classification of multichannel EEG signal by linear discriminant analysis, in Progress in Systems Engineering, (Cham, 2015), S. 279–282. https://doi.org/10.1007/978-3-319-08422-0_42

    Chapter  Google Scholar 

  55. S. Dodia, D.R. Edla, A. Bablani, D. Ramesh, V. Kuppili, An efficient EEG based deceit identification test using wavelet packet transform and linear discriminant analysis. J. Neurosci. Methods 314, 31–40 (2019). https://doi.org/10.1016/j.jneumeth.2019.01.007

    Article  Google Scholar 

  56. S.F. Hussain, A novel robust kernel for classifying high-dimensional data using support vector machines. Expert Syst. Appl. 131, 116–131 (2019). https://doi.org/10.1016/j.eswa.2019.04.037

    Article  Google Scholar 

  57. E. Hortal, E. Iáñez, A. Úbeda, D. Planelles, Á. Costa, J.M. Azorín, Selection of the best mental tasks for a SVM-based BCI system, in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), (2014), S. 1483–1488. https://doi.org/10.1109/SMC.2014.6974125

    Chapter  Google Scholar 

  58. N. Kumar, K. Alam, A.H. Siddiqi, Wavelet transform for classification of EEG signal using SVM and ANN. Biomedical Pharmacol. J. 10(4), 2061–2069 (2017)

    Article  Google Scholar 

  59. A.Q.-X. Ang, Y.Q. Yeong, W. Wee, Emotion classification from EEG signals using time-frequency-DWT features and ANN. J. Comput. Communicat. 5(3), 3 (2017). https://doi.org/10.4236/jcc.2017.53009

    Article  Google Scholar 

  60. K. Amarasinghe, D. Wijayasekara, M. Manic, EEG based brain activity monitoring using Artificial Neural Networks, in 2014 7th International Conference on Human System Interactions (HSI), (2014), S. 61–66. https://doi.org/10.1109/HSI.2014.6860449

    Chapter  Google Scholar 

  61. U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan, H. Adeli, Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018). https://doi.org/10.1016/j.compbiomed.2017.09.017

    Article  Google Scholar 

  62. P.C. Nissimagoudar, A.V. Nandi, H.M. Gireesha, Deep convolution neural network-based feature learning model for EEG based driver alert/drowsy state detection, in Proceedings of the 11th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2019), (Cham, 2021), S. 287–296. https://doi.org/10.1007/978-3-030-49345-5_30

  63. U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan, H. Adeli, D.P. Subha, Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Prog. Biomed. 161, 103–113 (2018). https://doi.org/10.1016/j.cmpb.2018.04.012

    Article  Google Scholar 

  64. S.L. Oh, Y. Hagiwara, U. Raghavendra, R. Yuvaraj, N. Arunkumar, M. Murugappan, U.R. Acharya, A deep learning approach for parkinson’s disease diagnosis from EEG signals. Neural Comput. & Applic. 32(15), 10927–10933 (2020). https://doi.org/10.1007/s00521-018-3689-5

    Article  Google Scholar 

  65. Ö. Yıldırım, U.B. Baloglu, U.R. Acharya, A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Comput. & Applic. 32(20), 15857–15868 (2020). https://doi.org/10.1007/s00521-018-3889-z

    Article  Google Scholar 

  66. G. Zhang, V. Davoodnia, A. Sepas-Moghaddam, Y. Zhang, A. Etemad, Classification of hand movements from EEG using a deep attention-based LSTM network. IEEE Sensors J. 20(6), 3113–3122 (2020). https://doi.org/10.1109/JSEN.2019.2956998

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Fawad Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassan, F., Hussain, S.F. (2024). Überblick über die Klassifizierung von EEG-Signalen mit maschinellem Lernen und Deep-Learning-Techniken. In: Qaisar, S.M., Nisar, H., Subasi, A. (eds) Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-52856-9_7

Download citation

Publish with us

Policies and ethics