Skip to main content

Fortschritte in der Analyse des Elektrokardiogramms im Kontext des Massenscreenings: Technologische Trends und Anwendung der KI-Anomalieerkennung

  • Chapter
  • First Online:
Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML
  • 24 Accesses

Zusammenfassung

Die Elektrokardiographie ist nach wie vor die am weitesten verbreitete Methode der Funktionsdiagnose. Das Kapitel richtet sich an die Debatte über die Entwicklung und die aktuelle Einstellung zur Herzinsuffizienz-Screening-Elektrokardiographie und überprüft die klinischen Praktiken der Anwendung von Fern-Elektrokardiogramm (EKG)-Aufzeichnungsgeräten, die Menge und Herkunft der Daten, die mit EKG-Geräten mit verschiedenen Anzahl von Sensoren unter Verwendung verschiedener moderner Methoden der mathematischen Transformation des EKG-Signals, d. h. der vierten Generation der EKG-Analyse, gesammelt werden können. Der Schwerpunkt liegt auf der Anwendung der modernen Methode des maschinellen Lernens – Anomalieerkennung zur Herzaktivitätsanalyse. Die Anomalieerkennung ist eine der Methoden des maschinellen Lernens, die jene Datensätze identifiziert, die von einem Konzept der Normalität abweichen. Solche Proben stellen Neuheiten oder Ausreißer in der Datensatz dar und enthalten oft wichtige Informationen. Als Beispiel für die Anwendung der Anomalieerkennung in der biomedizinischen Signalanalyse wird das Problem der Identifizierung der subtilen Abweichungen von der Bevölkerungsnorm auf der Basis des EKG vorgestellt. Die Zeit-Magnitude-Merkmale, die aus sechs Leitungen des Signal Average EKG abgeleitet sind, werden im Isolation Forest Anomaly (IFA) Detektor verwendet, um die Entfernung des einzelnen EKG von der Gruppe der normalen Kontrollen zu quantifizieren. Die Eingangsdaten zur IFA-Technik bestehen aus verschiedenen Baumhöhen sowie mehreren Verschmutzungsfaktoren. Zum Vergleich wurden fünf verschiedene Gruppen untersucht: Patienten mit nachgewiesenen koronaren Herzkrankheiten, Militärpersonal mit Minenexplosionsverletzungen, COVID-19-Überlebende und zwei Untergruppen, die Teilnehmer eines weit verbreiteten Screenings in einem der ländlichen Gebiete der Ukraine betreffen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Die in diesem Buch zu findende Bezeichnung der „Rasse“ bzw. „rassisch“ gibt das im Amerikanischen vorherrschende Konzept von „race“ wieder: Gemeint ist die Einteilung der US-amerikanischen Bevölkerung nach geographischer Herkunft seiner Vorfahren wie Schwarze/Afroamerikaner, Weiße/Amerikaner europäischer Abstammung, Lateinamerikaner, Asiaten. In diesem Buch ist der Begriff „Rasse“ ausschließlich in dieser Bedeutung zu verstehen.

Literatur

  1. J. Calvillo, I. Román, L.M. Roa, How technology is empowering patients. A literature review. 2013. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.893.3296&rep=rep1&type=pdf

  2. Single lead ECG equipment market size. [cited 16 Feb 2021]. Available: https://www.grandviewresearch.com/industry-analysis/single-lead-ecg-equipment-market

  3. I. Chaikovsky, Electrocardiogram scoring beyond the routine analysis: Subtle changes matters. Expert Rev. Med. Devices 17(5), 379–382 (2020)

    Article  Google Scholar 

  4. Z.I. Attia, D.M. Harmon, E.R. Behr, P.A. Friedman, Application of artificial intelligence to the electrocardiogram. Eur. Heart J. 42(46), 4717–4730 (2021)

    Article  Google Scholar 

  5. K.M. Anderson, P.W. Wilson, P.M. Odell, W.B. Kannel, An updated coronary risk profile. A statement for health professionals. Circulation 83, 356–362 (1991)

    Article  Google Scholar 

  6. R.M. Conroy, K. Pyörälä, A.P. Fitzgerald, S. Sans, A. Menotti, G. De Backer, D. De Bacquer, P. Ducimetière, P. Jousilahti, U. Keil, I. Njølstad, R.G. Oganov, T. Thomsen, H. Tunstall-Pedoe, A. Tverdal, H. Wedel, P. Whincup, L. Wilhelmsen, Graham IM; SCORE project group. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. Eur. Heart J. 24(11), 987–1003 (2003)

    Article  Google Scholar 

  7. S.A. Shal’nova, O.V. Vikhireva, Otsenkasummarnogoriskaserdechno-sosudistykhzabolevaniy.Ratsional’nayafarmakoterapiya v kardiologii. 2005; 1. Available: https://cyberleninka.ru/article/n/7138553

  8. Pooling Project Research Group. Relationship of blood pressure, serum cholesterol, smoking habit, relative weight and ECG abnormalities to incidence of major coronary events: Final Report of the Pooling Project.. American Heart Association; 1978

    Google Scholar 

  9. W.B. Kannel, K. Anderson, D.L. McGee, L.S. Degatano, M.J. Stampfer, Nonspecific electrocardiographic abnormality as a predictor of coronary heart disease: The Framingham study. Am. Heart J. 113, 370–376 (1987)

    Article  Google Scholar 

  10. D. De Bacquer, G. De Backer, M. Kornitzer, H. Blackburn, Prognostic value of ECG findings for total, cardiovascular disease, and coronary heart disease death in men and women. Heart 80, 570–577 (1998)

    Article  Google Scholar 

  11. M.L. Daviglus, Y. Liao, P. Greenland, A.R. Dyer, K. Liu, X. Xie, C.F. Huang, R.J. Prineas, J. Stamler, Association of nonspecific minor ST-T abnormalities with cardiovascular mortality: The Chicago Western Electric Study. JAMA 281(6), 530–536 (1999)

    Article  Google Scholar 

  12. P. Greenland, X. Xie, K. Liu, L. Colangelo, Y. Liao, M.L. Daviglus, A.N. Agulnek, J. Stamler, Impact of minor electrocardiographic ST-segment and/or T-wave abnormalities on cardiovascular mortality during long-term follow-up. Am. J. Cardiol. 91(9), 1068–1074 (2003)

    Article  Google Scholar 

  13. P. Denes, J.C. Larson, D.M. Lloyd-Jones, R.J. Prineas, P. Greenland, Major and minor ECG abnormalities in asymptomatic women and risk of cardiovascular events and mortality. JAMA 297, 978–985 (2007)

    Article  Google Scholar 

  14. Chou R, Arora B, Dana T, Fu R, Walker M, Humphrey L. Screening asymptomatic adults with resting or exercise electrocardiography: a review of the evidence for the U.S. preventive services task force. Centre for Reviews and Dissemination (UK); 2011

    Google Scholar 

  15. Moyer VA. Screening for Coronary Heart Disease With Electrocardiography: U.S. Preventive Services Task Force Recommendation Statement. Annals of Internal Medicine. 2012

    Google Scholar 

  16. AAFP recommendations for preventive services guideline. In: AAFP [Internet]. [cited 28 Feb 2020]. Available: https://www.aafp.org/online/etc/medialib/aafp_org/documents/clinical/CPS/rcps08-2005.Par.0001.File.tmp/October2012SCPS.pdf

  17. P. Greenland, J.S. Alpert, G.A. Beller, E.J. Benjamin, M.J. Budoff, Z.A. Fayad, E. Foster, M.A. Hlatky, J.M. Hodgson, F.G. Kushner, M.S. Lauer, L.J. Shaw, S.C. Smith Jr., A.J. Taylor, W.S. Weintraub, N.K. Wenger, A.K. Jacobs, S.C. Smith Jr., J.L. Anderson, N. Albert, C.E. Buller, M.A. Creager, S.M. Ettinger, R.A. Guyton, J.L. Halperin, J.S. Hochman, F.G. Kushner, R. Nishimura, E.M. Ohman, R.L. Page, W.G. Stevenson, L.G. Tarkington, C.W. Yancy, American College of Cardiology Foundation; American Heart Association, 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: A report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J. Am. Coll. Cardiol. 56(25), e50–e103 (2010)

    Article  Google Scholar 

  18. A. Groot, M.L. Bots, F.H. Rutten, H.M. den Ruijter, M.E. Numans, I. Vaartjes, Measurement of ECG abnormalities and cardiovascular risk classification: A cohort study of primary care patients in the Netherlands. Br. J. Gen. Pract. 65, e1–e8 (2015)

    Article  Google Scholar 

  19. British Medical Journal Publishing Group, GRADE: grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 336, 1106 (2008). https://doi.org/10.1136/bmj.a139

    Article  Google Scholar 

  20. Committee for Practice Guidelines ESC. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012) The Fifth Joint Task Force of the European Society of Cardiology and American Heart Association. Eur. Heart J. 2012. Available: https://academic.oup.com/eurheartj/article-abstract/33/13/1635/488083

  21. R. Auer, D.C. Bauer, P. Marques-Vidal, J. Butler, L.J. Min, J. Cornuz, S. Satterfield, A.B. Newman, E. Vittinghoff, N. Rodondi, Health ABC Study, Association of major and minor ECG abnormalities with coronary heart disease events. JAMA 307(14), 1497–1505 (2012)

    Article  Google Scholar 

  22. S.Y. Tan, G.W. Sungar, J. Myers, M. Sandri, V. Froelicher, A simplified clinical electrocardiogram score for the prediction of cardiovascular mortality. Clin. Cardiol. 32, 82–86 (2009)

    Article  Google Scholar 

  23. E.Z. Gorodeski, H. Ishwaran, U.B. Kogalur, E.H. Blackstone, E. Hsich, Z.M. Zhang, M.Z. Vitolins, J.E. Manson, J.D. Curb, L.W. Martin, R.J. Prineas, M.S. Lauer, Use of hundreds of electrocardiographic biomarkers for prediction of mortality in postmenopausal women: The Women’s Health Initiative. Circ. Cardiovasc. Qual. Outcomes 4(5), 521–532 (2011)

    Article  Google Scholar 

  24. T.T. Schlegel, W.B. Kulecz, A.H. Feiveson, E.C. Greco, J.L. DePalma, V. Starc, B. Vrtovec, M.A. Rahman, M.W. Bungo, M.J. Hayat, T. Bauch, R. Delgado, S.G. Warren, T. Núñez-Medina, R. Medina, D. Jugo, H. Arheden, O. Pahlm, Accuracy of advanced versus strictly conventional 12-lead ECG for detection and screening of coronary artery disease, left ventricular hypertrophy and left ventricular systolic dysfunction. BMC Cardiovasc. Disord. 10, 28 (2010)

    Article  Google Scholar 

  25. A.L. Arnold, K.A. Milner, V. Vaccarino, Sex and race differences in electrocardiogram use (the National Hospital Ambulatory Medical Care Survey). Am. J. Cardiol. 88, 1037–1040 (2001)

    Article  Google Scholar 

  26. P.M. Okin, J.T. Wright, M.S. Nieminen, S. Jern, A.L. Taylor, R. Phillips, V. Papademetriou, L.T. Clark, E.O. Ofili, O.S. Randall, L. Oikarinen, M. Viitasalo, L. Toivonen, S. Julius, B. Dahlöf, R.B. Devereux, Ethnic differences in electrocardiographic criteria for left ventricular hypertrophy: The LIFE study. Losartan intervention for endpoint. Am. J. Hypertens. 15(8), 663–671 (2002)

    Article  Google Scholar 

  27. P.A. Noseworthy, Z.I. Attia, L.C. Brewer, S.N. Hayes, X. Yao, S. Kapa, P.A. Friedman, F. Lopez-Jimenez, Assessing and mitigating bias in medical artificial intelligence: The effects of race and ethnicity on a deep learning model for ECG analysis. Circ. Arrhythm. Electrophysiol. 13(3), e007988 (2020)

    Article  Google Scholar 

  28. F.N. Wilson, The clinical value of chest leads. Br. Heart J. 10(2), 88–91 (1948)

    Article  Google Scholar 

  29. M.L. Løchen, K. Rasmussen, P.W. Macfarlane, E. Arnesen, Can single-lead computerized electrocardiography predict myocardial infarction in young and middle-aged men? J. Cardiovasc. Risk 6(4), 273–278 (1999)

    Article  Google Scholar 

  30. M.A. Hlatky, P. Greenland, D.K. Arnett, C.M. Ballantyne, M.H. Criqui, M.S. Elkind, A.S. Go, F.E. Harrell Jr., Y. Hong, B.V. Howard, V.J. Howard, P.Y. Hsue, C.M. Kramer, M.C. JP, S.L. Normand, C.J. O’Donnell, S.C. Smith Jr., P.W. Wilson, American Heart Association Expert Panel on Subclinical Atherosclerotic Diseases and Emerging Risk Factors and the Stroke Council, Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation 119(17), 2408–2416 (2009)

    Article  Google Scholar 

  31. W. Stanford, Screening of coronary artery disease: Is there a cost-effective way to do it? Am. J. Cardiol Imaging 10(3), 180–186 (1996)

    Google Scholar 

  32. ACC Consensus Document on Signal-Averaged Electrocardiography. JACC 27(1), 238–249 (1996)

    Google Scholar 

  33. J.F. Robillon, J.L. Sadoul, D. Jullien, P. Morand, P. Freychet, Abnormalities suggestive of cardiomyopathy in patients with type 2 diabetes of relatively short duration. Diabete Metab. 20(5), 473–480 (1994)

    Google Scholar 

  34. F. Cecchi, A. Montereggi, I. Olivotto, P. Marconi, A. Dolara, B.J. Maron, Risk for atrial fibrillation in patients with hypertrophic cardiomyopathy assessed by signal averaged P wave duration. Heart 78(1), 44–49 (1997)

    Article  Google Scholar 

  35. F. Extramiana, A. Haggui, P. Maison-Blanche, R. Dubois, S. Takatsuki, P. Beaufils, A. Leenhardt, T-wave morphology parameters based on principal component analysis reproducibility and dependence on T-offset position. Ann. Noninvasive Electrocardiol. 12(4), 354–363 (2007)

    Article  Google Scholar 

  36. P.M. Okin, R.B. Devereux, R.R. Fabsitz, E.T. Lee, J.M. Galloway, B.V. Howard, Principal component analysis of the T wave and prediction of cardiovascular mortality in American Indians: The strong heart study. Circulation 105(6), 714–719 (2002)

    Article  Google Scholar 

  37. A. Pelliccia, F.M. Di Paolo, F.M. Quattrini, C. Basso, F. Culasso, G. Popoli, R. De Luca, A. Spataro, A. Biffi, G. Thiene, B.J. Maron, Outcomes in athletes with marked ECG repolarization abnormalities. N. Engl. J. Med. 358(2), 152–161 (2008)

    Article  Google Scholar 

  38. C.N. Mead, S.M. Moore, K.W. Clark, B.F. Spenner, L.J. Thomas Jr., A detection algorithm for multiform premature ventricular contractions. Med. Instrum. 12(6), 337–339 (1978)

    Google Scholar 

  39. I.A. Chaikovsky, L.S. Fainzilberg, Medical aspects of the use of the FASAGRAPH device in clinical practice and at home (Kyiv, IRT Center ITIS, 2009), p. 74

    Google Scholar 

  40. O.V. Baum, I.A. Chaĭkovskiĭ, L.A. Popov, V.I. Voloshin, L.S. Faĭnzil’berg, M.M. Budnik, Electrocardiographic image of myocardial ischemia: Real measurements and biophysical models. Biofizika 55(5), 925–936 (2010)

    Google Scholar 

  41. T.T. Schlegel, W.B. Kulecz, J.L. DePalma, A.H. Feiveson, J.S. Wilson, M.A. Rahman, M.W. Bungo, Real-time 12-lead high-frequency QRS electrocardiography for enhanced detection of myocardial ischemia and coronary artery disease. Mayo Clin. Proc. 79(3), 339–350 (2004)

    Article  Google Scholar 

  42. P. Rautaharju, C. Kooperberg, J. Larson, A. LaCroix, Electrocardiographic abnormalities that predict coronary heart disease events and mortality in postmenopausal women. Circulation 113, 473–480 (2006)

    Article  Google Scholar 

  43. M. Malik, V.N. Batchvarov, Measurement, interpretation and clinical potential of QT dispersion. J. Am. Coll. Cardiol. 36(6), 1749–1766 (2000)

    Article  Google Scholar 

  44. L.I. Titomir, N.E. Barinova, Electrocardiographic mapping (Methodological Guide, Moscow, 2006) 51 p

    Google Scholar 

  45. W.L. Atiga, H. Calkins, J.H. Lawrence, G.F. Tomaselli, J.M. Smith, R.D. Berger, Beat-to-beat repolarization lability identifies patients at risk for sudden cardiac death. J. Cardiovasc. Electrophysiol. 9(9), 899–908 (1998)

    Article  Google Scholar 

  46. K.C. Siontis, P.A. Noseworthy, Z.I. Attia, P.A. Friedman, Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 18(7), 465–478 (2021)

    Article  Google Scholar 

  47. O. Akbilgic, L. Butler, I. Karabayir, P.P. Chang, D.W. Kitzman, A. Alonso, L.Y. Chen, E.Z. Soliman, ECG-AI: Electrocardiographic artificial intelligence model for prediction of heart failure. Eur. Heart J. Digit. Health 2(4), 626–634 (2021)

    Article  Google Scholar 

  48. A.O. Ladejobi, J.R. Medina-Inojosa, M. Shelly Cohen, Z.I. Attia, C.G. Scott, N.K. Le Brasseur, B.J. Gersh, P.A. Noseworthy, P.A. Friedman, S. Kapa, F. Lopez-Jimenez, The 12-lead electrocardiogram as a biomarker of biological age. Eur. Heart J. Digit. Health 2(3), 379–389 (2021)

    Article  Google Scholar 

  49. L. Ruff, J.R. Kauffmann, R.A. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T.G. Dietterich, K.R. Müller. A unifying review of deep and shallow anomaly detection. Proceedings of the IEEE. 2021 Feb 4

    Google Scholar 

  50. C.C. Aggarwal, Outlier analysis (Springer, Cham, 2017), p. 466

    Google Scholar 

  51. H. Li, P. Boulanger, A survey of heart anomaly detection using ambulatory electrocardiogram (ECG). Sensors 20(5), 1461 (2020)

    Article  Google Scholar 

  52. C. Venkatesan, P. Karthigaikumar, P. Anand, S. Satheeskumaran, R. Kumar, ECG signal preprocessing and SVM classifier-based abnormality detection in remote healthcare applications. IEEE Access 6, 9767–9773 (2018)

    Article  Google Scholar 

  53. H. Zhou, C. Kan, Tensor-based ECG anomaly detection toward cardiac monitoring in the internet of health things. Sensors 21(12), 4173 (2021)

    Article  Google Scholar 

  54. G. Sivapalan, K.K. Nundy, S. Dev, B. Cardiff, D. John, ANNet: a lightweight neural network for ECG anomaly detection in IoT edge sensors. IEEE Trans. Biomed. Circuits Syst. 16(1), 24–35 (2022)

    Article  Google Scholar 

  55. F. T. Liu, K. M. Ting and Z. Zhou, “Isolation Forest,” 2008 Eighth IEEE International Conference on Data Mining, 2008, S. 413–422. https://doi.org/10.1109/ICDM.2008.17

  56. F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 1–39 (2012)

    Article  Google Scholar 

  57. I. Chaikovsky, A. Popov, D. Fogel, A. Kazmirchyk, Development of AI-based method to detect the subtle ECG deviations from the population ECG norm. Eur. J. Prev. Cardiol. 28(Supplement_1), zwab061–zwab229 (2021)

    Article  Google Scholar 

  58. T. Reichlin, R. Abächerli, R. Twerenbold, M. Kühne, B. Schaer, C. Müller, C. Sticherling, S. Osswald, Advanced ECG in 2016: Is there more than just a tracing? Swiss Med. Wkly. 146, w14303 (2016)

    Google Scholar 

  59. R. Cuocolo, T. Perillo, E. De Rosa, L. Ugga, M. Petretta, Current applications of big data and machine learning in cardiology. J. Geriatr. Cardiol. 16(8), 601–607 (2019)

    Google Scholar 

  60. J. Petch, S. Di, W. Nelson, Opening the black box: The promise and limitations of explainable machine learning in cardiology. Can. J. Cardiol. 38(2), 204–213 (2022)

    Article  Google Scholar 

  61. A.A. Mahayni, Z.I. Attia, J.R. Medina-Inojosa, M.F.A. Elsisy, P.A. Noseworthy, F. Lopez-Jimenez, S. Kapa, S.J. Asirvatham, P.A. Friedman, J.A. Crestenallo, M. Alkhouli, Electrocardiography-based artificial intelligence algorithm aids in prediction of long-term mortality after cardiac surgery. Mayo Clin. Proc. 96(12), 3062–3070 (2021)

    Article  Google Scholar 

  62. S. Raghunath, A.E. Ulloa Cerna, L. Jing, D.P. VanMaanen, J. Stough, D.N. Hartzel, B.K. Fornwalt, Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat. Med. 26(6), 886–891 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaikovsky, I., Popov, A. (2024). Fortschritte in der Analyse des Elektrokardiogramms im Kontext des Massenscreenings: Technologische Trends und Anwendung der KI-Anomalieerkennung. In: Qaisar, S.M., Nisar, H., Subasi, A. (eds) Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-52856-9_5

Download citation

Publish with us

Policies and ethics