Skip to main content

Gehirn-Computer-Schnittstelle (BCI), basierend auf der EEG-Signalzerlegung, Schmetterlingsoptimierung und maschinellem Lernen

  • Chapter
  • First Online:
Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML

Zusammenfassung

Die Gehirn-Computer-Schnittstelle (BCI) ist eine Technologie, die Menschen mit Behinderungen hilft, Hilfsgeräte zu bedienen, indem sie neuromuskuläre Kanäle umgeht. Diese Studie zielt darauf ab, die Elektroenzephalographie (EEG) Signale zu verarbeiten und diese Signale dann durch Analyse und Kategorisierung mit Maschinenlernalgorithmen in Befehle zu übersetzen. Die Ergebnisse können weiterhin zur Steuerung eines Hilfsgeräts verwendet werden. Die Bedeutung dieses Projekts liegt in der Unterstützung von Menschen mit schweren motorischen Beeinträchtigungen, Lähmungen oder denen, die ihre Gliedmaßen verloren haben, um unabhängig und selbstbewusst zu sein, indem sie ihre Umgebung kontrollieren und ihnen alternative Kommunikationswege bieten. Die erworbenen EEG-Signale werden digital mit einem Tiefpass gefiltert und dezimiert. Anschließend wird die Wavelet-Zerlegung zur Signalanalyse verwendet. Die Merkmale werden aus den erhaltenen Unterbändern abgebaut. Die Dimension des extrahierten Merkmalsatzes wird durch Verwendung des Butterfly-Optimierungsalgorithmus reduziert. Der ausgewählte Merkmalsatz wird dann von den Klassifikatoren verarbeitet. Die Leistung des k-Nearest Neighbor, der Support Vector Machine und des Artificial Neural Network wird für die Kategorisierung von motorischen Imagery-Aufgaben durch Verarbeitung des ausgewählten Merkmalsatzes verglichen. Die vorgeschlagene Methode sichert eine höchste Genauigkeitsbewertung von 83,7 % für den Fall des k-Nearest Neighbor-Klassifikators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. V. Schiariti, The human rights of children with disabilities during health emergencies: The challenge of COVID-19. Dev. Med. Child Neurol. 62(6), 661 (2020)

    Article  Google Scholar 

  2. G.L. Krahn, WHO world report on disability: A review. Disabil. Health J. 4(3), 141–142 (2011)

    Article  Google Scholar 

  3. N. Veena, N. Anitha, A review of non-invasive BCI devices. Int. J. Biomed. Eng. Technol. 34(3), 205–233 (2020)

    Article  Google Scholar 

  4. T. Choy, E. Baker, K. Stavropoulos, Systemic racism in EEG research: Considerations and potential solutions. Affect. Sci. 3, 1–7 (2021)

    Google Scholar 

  5. X. Wan et al., A review on electroencephalogram based brain computer interface for elderly disabled. IEEE Access 7, 36380–36387 (2019)

    Article  Google Scholar 

  6. A. Kübler, The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome. Neuroethics 13(2), 163–180 (2020)

    Article  Google Scholar 

  7. H. Berger, Über das elektroenkephalogramm des menschen. Arch. Für Psychiatr. Nervenkrankh. 87(1), 527–570 (1929)

    Article  Google Scholar 

  8. I. Arafat, Brain-computer interface: Past, present & future. Int. Islam. Univ. Chittagong IIUC Chittagong Bangladesh, 1–6 (2013)

    Google Scholar 

  9. L.A. Farwell, E. Donchin, Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    Article  Google Scholar 

  10. A. Rezeika, M. Benda, P. Stawicki, F. Gembler, A. Saboor, I. Volosyak, Brain–computer interface spellers: A review. Brain Sci. 8(4), 57 (2018)

    Article  Google Scholar 

  11. Y. Zhang, Invasive BCI and noninvasive BCI with VR/AR technology, 12153, 186–192 (2021)

    Google Scholar 

  12. P.R. Kennedy, R.A. Bakay, Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport 9(8), 1707–1711 (1998)

    Article  Google Scholar 

  13. P.R. Kennedy, R.A. Bakay, M.M. Moore, K. Adams, J. Goldwaithe, Direct control of a computer from the human central nervous system. IEEE Trans. Rehabil. Eng. 8(2), 198–202 (2000)

    Article  Google Scholar 

  14. M. Korr, RI physician traces tragedy, triumphs in’Man with bionic brain’. R I Med. J. 96(2), 47 (2013)

    Google Scholar 

  15. G.E. Fabiani, D.J. McFarland, J.R. Wolpaw, G. Pfurtscheller, Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Trans. Neural Syst. Rehabil. Eng. 12(3), 331–338 (2004)

    Article  Google Scholar 

  16. T. Fujikado, Brain machine-interfaces for sensory systems, in Cognitive Neuroscience Robotics B, (Springer, 2016), S. 209–225

    Google Scholar 

  17. L.R. Hochberg et al., Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2012)

    Article  Google Scholar 

  18. D. Seo et al., Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91(3), 529–539 (2016)

    Article  Google Scholar 

  19. G.K. Anumanchipalli, J. Chartier, E.F. Chang, Speech synthesis from neural decoding of spoken sentences. Nature 568(7753), 493–498 (2019)

    Article  Google Scholar 

  20. P. Loizidou et al., Extending brain-computer interface access with a multilingual language model in the P300 speller. Brain Comput. Interf., 1–13 (2021)

    Google Scholar 

  21. J.M.R. Delgado, Physical Control of the Mind: Toward a Psychocivilized Society, vol 41 (World Bank Publications, 1969)

    Google Scholar 

  22. P. Kennedy, A. Ganesh, A. Cervantes, Slow Firing Single Units Are Essential for Optimal Decoding of Silent Speech (2022)

    Google Scholar 

  23. G. Zu Putlitz et al., Exploring the Mind

    Google Scholar 

  24. M. Pais-Vieira, M. Lebedev, C. Kunicki, J. Wang, M.A. Nicolelis, A brain-to-brain interface for real-time sharing of sensorimotor information. Sci. Rep. 3(1), 1–10 (2013)

    Article  Google Scholar 

  25. V. Mishuhina, X. Jiang, Feature weighting and regularization of common spatial patterns in EEG-based motor imagery BCI. IEEE Signal Process. Lett. 25(6), 783–787 (2018)

    Article  Google Scholar 

  26. Y. Song, D. Wang, K. Yue, N. Zheng, Z.-J. M. Shen. EEG-based motor imagery classification with deep multi-task learning, 1–8 (2019)

    Google Scholar 

  27. J. Belo, M. Clerc, D. Schön, “EEG-based auditory attention detection and its possible future applications for passive BCI,” Brain-Comput. Interf. Non-Clin. Home Sports Art Entertain. Educ. Well- Appl. (2022)

    Google Scholar 

  28. F. Fahimi, Z. Zhang, W. B. Goh, K. K. Ang, C. Guan. Towards EEG generation using GANs for BCI application, 1–4 (2019)

    Google Scholar 

  29. R. Abiri, S. Borhani, E.W. Sellers, Y. Jiang, X. Zhao, A comprehensive review of EEG-based brain–computer interface paradigms. J. Neural Eng. 16(1), 011001 (2019)

    Article  Google Scholar 

  30. B. Blankertz et al., The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 153–159 (2006)

    Article  Google Scholar 

  31. S.M. Qaisar, A custom 70-channel mixed signal ASIC for the brain-PET detectors signal readout and selection. Biomed. Phys. Eng. Express 5(4), 045018 (2019)

    Article  Google Scholar 

  32. S. Mian Qaisar, Isolated speech recognition and its transformation in visual signs. J. Electr. Eng. Technol. 14(2), 955–964 (2019)

    Article  Google Scholar 

  33. S. M. Qaisar, S. I. Khan, K. Srinivasan, and M. Krichen. Arrhythmia classification using multirate processing metaheuristic optimization and variational mode decomposition. J. King Saud Univ. Comput. Inf. Sci. (2022)

    Google Scholar 

  34. S.M. Qaisar, A. Mihoub, M. Krichen, H. Nisar, Multirate processing with selective subbands and machine learning for efficient arrhythmia classification. Sensors 21(4), 1511 (2021)

    Article  Google Scholar 

  35. H. Fatayerji, R. Al Talib, A. Alqurashi, S. M. Qaisar. sEMG signal features extraction and machine learning based gesture recognition for prosthesis hand, 166–171 (2022)

    Google Scholar 

  36. S. Mian Qaisar, F. Alsharif, Signal piloted processing of the smart meter data for effective appliances recognition. J. Electr. Eng. Technol 15(5), 2279–2285 (2020)

    Article  Google Scholar 

  37. S. Mian Qaisar, Signal-piloted processing and machine learning based efficient power quality disturbances recognition. PLoS One 16(5), e0252104 (2021)

    Article  Google Scholar 

  38. S. Mian Qaisar, A proficient Li-ion battery state of charge estimation based on event-driven processing. J. Electr. Eng. Technol. 15(4), 1871–1877 (2020)

    Article  Google Scholar 

  39. S.M. Qaisar, Efficient mobile systems based on adaptive rate signal processing. Comput. Electr. Eng. 79, 106462 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mian Qaisar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alghamdi, M., Mian Qaisar, S., Bawazeer, S., Saifuddin, F., Saeed, M. (2024). Gehirn-Computer-Schnittstelle (BCI), basierend auf der EEG-Signalzerlegung, Schmetterlingsoptimierung und maschinellem Lernen. In: Qaisar, S.M., Nisar, H., Subasi, A. (eds) Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-52856-9_4

Download citation

Publish with us

Policies and ethics