Skip to main content

Verbesserung der Erkennung des Arbeitsgedächtnisses von Demenz-Patienten mithilfe von Entropie-basierten Merkmalen und dem Local Tangent Space Alignment Algorithmus

  • Chapter
  • First Online:
Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML

Zusammenfassung

Die Erkennung von Demenz stellt eine Barriere für die Weiterentwicklung der individualisierten Gesundheitsversorgung dar. Die nicht-lineare Natur von Elektroenzephalographie (EEG)-Signalen wurde mit Entropien charakterisiert. In einem Gedächtnistest (WM) wurden in dieser Studie die EEGs von 5 Patienten mit vaskulärer Demenz (VD), 15 Patienten mit schlaganfallbedingter leichter kognitiver Beeinträchtigung (SMCI) und 15 gesunden normalen Kontrollteilnehmern (NC) bewertet. Ein vierstufiger Rahmen für die automatische Identifizierung von Demenz wird bereitgestellt, wobei die erste Stufe die neu entwickelte automatische unabhängige Komponentenanalyse und Wavelet (AICA-WT)-Methode verwendet. In der zweiten Stufe wurden nicht-lineare Entropie-Merkmale mit Fuzzy-Entropie (FuzzEn), Fluktuations-basierte Dispersion-Entropie (FDispEn) und Bubble-Entropie (BubbEn) genutzt, um verschiedene dynamische Eigenschaften aus Mehrkanal-EEG-Signalen von Patienten mit Demenz zu extrahieren. Eine statistische Untersuchung der individuellen Leistung wurde mithilfe der Varianzanalyse (ANOVA) durchgeführt, um den Grad der EEG-Komplexität über die Gehirnregionen hinweg zu bestimmen. Danach wurde der nicht-lineare lokale Tangentenraum-Alignment (LSTA)-Dimensionsreduktionsansatz verwendet, um die automatische Diagnose von Demenz-Patienten zu verbessern. Mit k-nächsten Nachbarn (kNN), Support Vector Machine (SVM) und Entscheidungsbaum (DT)-Klassifikatoren wurde schließlich die Beeinträchtigung von Patienten nach einem Schlaganfall identifiziert. BubbEn wird ausgewählt, um einen neuen BubbEn-LTSA-Mapping-Prozess zu entwickeln, um das innovative AICA-WT-BubbEn-LTSA-Demenzerkennungs-Framework zu erstellen, das die Grundlage für eine automatisierte VD-Erkennung bildet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. C. Iadecola et al., Vascular cognitive impairment and dementia: JACC scientific expert panel. J. Am. Coll. Cardiol. 73(25), 3326–3344 (2019)

    Article  Google Scholar 

  2. N.K. Al-Qazzaz et al., Cognitive assessments for the early diagnosis of dementia after stroke. Neuropsychiatr. Dis. Treat. 10, 1743 (2014)

    Article  Google Scholar 

  3. N.K. Al-Qazzaz et al., Cognitive impairment and memory dysfunction after a stroke diagnosis: A post-stroke memory assessment. Neuropsychiatr. Dis. Treat. 10, 1677 (2014)

    Article  Google Scholar 

  4. N.K. Al-Qazzaz et al., Role of EEG as biomarker in the early detection and classification of dementia. Sci. World J. 2014, 906038 (2014)

    Article  Google Scholar 

  5. A.D. Korczyn, V. Vakhapova, L.T. Grinberg, Vascular dementia. J. Neurol. Sci. 322(1–2), 2–10 (2012)

    Article  Google Scholar 

  6. T.B. Cumming, R.S. Marshall, R.M. Lazar, Stroke, cognitive deficits, and rehabilitation: Still an incomplete picture. Int. J. Stroke 8(1), 38–45 (2013)

    Article  Google Scholar 

  7. S. Ankolekar et al., Clinical trials for preventing post stroke cognitive impairment. J. Neurol. Sci. 299(1–2), 168–174 (2010)

    Article  Google Scholar 

  8. A. Cedazo-Minguez, B. Winblad, Biomarkers for Alzheimer’s disease and other forms of dementia: Clinical needs, limitations and future aspects. Exp. Gerontol. 45(1), 5–14 (2010)

    Article  Google Scholar 

  9. H. Hampel et al., Biomarkers for Alzheimer’s disease: Academic, industry and regulatory perspectives. Nat. Rev. Drug Discov. 9(7), 560–574 (2010)

    Article  Google Scholar 

  10. S.T. DeKosky, K. Marek, Looking backward to move forward: Early detection of neurodegenerative disorders. Science 302(5646), 830–834 (2003)

    Article  Google Scholar 

  11. S.-S. Poil et al., Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage. Front. Aging Neurosci. 5, 58 (2013)

    Article  Google Scholar 

  12. J. Escudero et al., Assessment of classification improvement in patients with Alzheimer’s disease based on magnetoencephalogram blind source separation. Artif. Intell. Med. 43(1), 75–85 (2008)

    Article  Google Scholar 

  13. C. Gómez, et al., Magnetoencephalogram background activity analysis in Alzheimer’s disease patients using auto mutual information. in Engineering in medicine and biology society, 2006. EMBS’06. 28th Annual International Conference of the IEEE. (IEEE 2006)

    Google Scholar 

  14. R. Hornero et al., Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009(367), 317–336 (1887)

    MathSciNet  MATH  Google Scholar 

  15. R. Hornero et al., Spectral and nonlinear analyses of MEG background activity in patients with Alzheimer’s disease. IEEE Trans. Biomed. Eng. 55(6), 1658–1665 (2008)

    Article  Google Scholar 

  16. P.R. Davidson, R.D. Jones, M.T. Peiris, EEG-based lapse detection with high temporal resolution. IEEE Trans. Biomed. Eng. 54(5), 832–839 (2007)

    Article  Google Scholar 

  17. F. Vecchio et al., Resting state cortical EEG rhythms in Alzheimer’s disease: Toward EEG markers for clinical applications: A review. Suppl. Clin. Neurophysiol. 62, 223–236 (2012)

    Article  Google Scholar 

  18. J. Jeong, EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 115(7), 1490–1505 (2004)

    Article  Google Scholar 

  19. N.K. Al-Qazzaz et al., Automatic artifact removal in EEG of normal and demented individuals using ICA–WT during working memory tasks. Sensors 17(6), 1326 (2017)

    Article  Google Scholar 

  20. P. Nguyen, et al. Age and gender classification using EEG paralinguistic features. in 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE. (2013)

    Google Scholar 

  21. N.K. Al-Qazzaz et al., Electroencephalogram profiles for emotion identification over the brain regions using spectral, entropy and temporal biomarkers. Sensors 20(1), 59 (2020)

    Article  Google Scholar 

  22. N.K. Al-Qazzaz, M.K. Sabir, and K. Grammer. Gender differences identification from brain regions using spectral relative powers of emotional EEG. in IWBBIO 2019 (2019)

    Google Scholar 

  23. N.K. Al-Qazzaz, M.K. Sabir, and K. Grammer. Correlation indices of electroencephalogram-based relative powers during human emotion processing. in Proceedings of the 2019 9th international conference on biomedical engineering and technology. (ACM 2019)

    Google Scholar 

  24. N.K. Al-Qazzaz, et al. Effective EEG channels for emotion identification over the brain regions using differential evolution algorithm. in 2019 41th annual international conference of the IEEE engineering in medicine and biology society (EMBC). (IEEE 2019)

    Google Scholar 

  25. Al-Qazzaz, N.K., et al. Stroke-related mild cognitive impairment detection during working memory tasks using EEG signal processing. in 2017 fourth international conference on advances in biomedical engineering (ICABME). (IEEE 2017)

    Google Scholar 

  26. Al-Qazzaz, N.K., et al. Classification enhancement for post-stroke dementia using fuzzy neighborhood preserving analysis with QR-decomposition. in 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). (IEEE 2017)

    Google Scholar 

  27. N.K. Al-Qazzaz et al., Discrimination of stroke-related mild cognitive impairment and vascular dementia using EEG signal analysis. Med. Biol. Eng. Comput. 56, 137–157 (2018)

    Google Scholar 

  28. N.K. Al-Qazzaz, S.H.M. Ali, and S.A. Ahmad. Comparison of the effectiveness of AICA-WT technique in discriminating vascular dementia EEGs. in 2018 2nd international conference on BioSignal analysis, processing and systems (ICBAPS). (IEEE 2018)

    Google Scholar 

  29. N. Al-Qazzaz et al., Selection of mother wavelet functions for multi-channel EEG signal analysis during a working memory task. Sensors 15(11), 29015–29035 (2015)

    Google Scholar 

  30. N.K. Al-Qazzaz et al., Selection of mother wavelets thresholding methods in denoising multi-channel EEG signals during working memory task, in Biomedical Engineering and Sciences (IECBES), 2014 IEEE Conference on, (IEEE, 2014)

    Google Scholar 

  31. N. Bajaj et al., Automatic and tunable algorithm for EEG artifact removal using wavelet decomposition with applications in predictive modeling during auditory tasks. Biomed. Signal Proc. Control 55, 101624 (2020)

    Article  Google Scholar 

  32. N.K. Al-Qazzaz et al., Discrimination of stroke-related mild cognitive impairment and vascular dementia using EEG signal analysis. Med. Biol. Eng. Comput. 56(1), 137–157 (2018)

    Article  Google Scholar 

  33. S. Xie, S. Krishnan, Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. Med. Biol. Eng. Comput. 51(1–2), 49–60 (2013)

    Article  Google Scholar 

  34. D. Abásolo et al., Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol. Meas. 27(3), 241 (2006)

    Article  Google Scholar 

  35. N.K. Al-Qazzaz, et al. EEG markers for early detection and characterization of vascular dementia during working memory tasks. in Biomedical engineering and sciences (IECBES), 2016 IEEE EMBS conference on. 2016. (IEEE 2016)

    Google Scholar 

  36. N.K. Al-Qazzaz et al., EEG wavelet spectral analysis during a working memory tasks in stroke-related mild cognitive impairment patients, in International Conference for Innovation in Biomedical Engineering and Life Sciences, (Springer, 2016)

    Google Scholar 

  37. N.K. Al-Qazzaz et al., Entropy-based markers of EEG background activity of stroke-related mild cognitive impairment and vascular dementia patients, in 2nd International Conference on Sensors Engineering and Electronics Instrumental Advances (SEIA 2016), (Barcelona, 2016)

    Google Scholar 

  38. J. Selvaraj et al., Classification of emotional states from electrocardiogram signals: A non-linear approach based on Hurst. Biomed. Eng. Online 12(1), 44 (2013)

    Article  Google Scholar 

  39. O. Sourina and Y. Liu. A fractal-based algorithm of emotion recognition from EEG using arousal-valence model. in Biosignals (2011)

    Google Scholar 

  40. N.K. Al-Qazzaz, et al. EEG markers for early detection and characterization of vascular dementia during working memory tasks. in 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE (2016)

    Google Scholar 

  41. B. García-Martínez et al., Application of entropy-based metrics to identify emotional distress from electroencephalographic recordings. Entropy 18(6), 221 (2016)

    Article  MathSciNet  Google Scholar 

  42. N. Thammasan et al., Continuous music-emotion recognition based on electroencephalogram. IEICE Trans. Inf. Syst. 99(4), 1234–1241 (2016)

    Article  Google Scholar 

  43. W.-L. Zheng, J.-Y. Zhu, B.-L. Lu, Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans. Affect. Comput. 10, 417–429 (2017)

    Google Scholar 

  44. N.K. Al-Qazzaz, S.H.M. Ali, and S.A. Ahmad. Differential evolution based channel selection algorithm on eeg signal for early detection of vascular dementia among stroke survivors. in 2018 IEEE-EMBS conference on biomedical engineering and sciences (IECBES). (IEEE 2018)

    Google Scholar 

  45. N.K. Al-Qazzaz et al., Optimal EEG Channel selection for vascular dementia identification using improved binary gravitation search algorithm, in International Conference for Innovation in Biomedical Engineering and Life Sciences, (Springer, 2017)

    Google Scholar 

  46. A. Freeman et al., Inclusion of sex and gender in biomedical research: Survey of clinical research proposed at the University of Pennsylvania. Biol. Sex Differ. 8(1), 22 (2017)

    Article  MathSciNet  Google Scholar 

  47. P. Wang, J. Hu, A hybrid model for EEG-based gender recognition. Cogn. Neurodyn. 13(6), 541–554 (2019)

    Article  Google Scholar 

  48. J. Tian, Z. Luo, Motor imagery EEG feature extraction based on fuzzy entropy. J. Huazhong Univ. Sci. Technol. 41, 92–95 (2013)

    Google Scholar 

  49. Y. Cao et al., Characterization of complexity in the electroencephalograph activity of Alzheimer’s disease based on fuzzy entropy. Chaos: An interdisciplinary. J. Nonlinear Sci. 25(8), 083116 (2015)

    MATH  Google Scholar 

  50. H. Azami, J. Escudero, Amplitude-and fluctuation-based dispersion entropy. Entropy 20(3), 210 (2018)

    Article  Google Scholar 

  51. J.S. Richman, J.R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000)

    Article  Google Scholar 

  52. M. Rostaghi, H. Azami, Dispersion entropy: A measure for time-series analysis. IEEE Signal Proc. Letters 23(5), 610–614 (2016)

    Article  Google Scholar 

  53. C. Bandt, B. Pompe, Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  Google Scholar 

  54. G. Manis, M. Aktaruzzaman, R. Sassi, Bubble entropy: An entropy almost free of parameters. IEEE Trans. Biomed. Eng. 64(11), 2711–2718 (2017)

    Article  Google Scholar 

  55. W. Chen et al., Measuring complexity using fuzzyen, apen, and sampen. Med. Eng. Phys. 31(1), 61–68 (2009)

    Article  Google Scholar 

  56. J. Kortelainen and T. Seppänen. EEG-based recognition of video-induced emotions: Selecting subject-independent feature set. in 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). (IEEE 2013)

    Google Scholar 

  57. Z. Wang, Z. Zhang, W. Wang, Emotion recognition based on framework of badeba-svm. Math. Probl. Eng. 2019, 1–9 (2019)

    Article  Google Scholar 

  58. H. Ullah et al., Internal emotion classification using EEG signal with sparse discriminative ensemble. IEEE Access 7, 40144–40153 (2019)

    Article  Google Scholar 

  59. B. Nakisa et al., Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 93, 143–155 (2018)

    Article  Google Scholar 

  60. J. Atkinson, D. Campos, Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst. Appl. 47, 35–41 (2016)

    Article  Google Scholar 

  61. P. Ackermann, et al. EEG-based automatic emotion recognition: Feature extraction, selection and classification methods. in 2016 IEEE 18th international conference on e-health networking, applications and services (Healthcom). (IEEE 2016)

    Google Scholar 

  62. A. Subasi, M. Ismail Gursoy, EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), 8659–8666 (2010)

    Article  Google Scholar 

  63. C. Vidaurre et al., Time domain parameters as a feature for EEG-based brain–computer interfaces. Neural Netw. 22(9), 1313–1319 (2009)

    Article  Google Scholar 

  64. M. Murugappan, N. Ramachandran, Y. Sazali, Classification of human emotion from EEG using discrete wavelet transform. J. Biomed. Sci. Eng. 3(04), 390 (2010)

    Article  Google Scholar 

  65. D. Lagun et al., Detecting cognitive impairment by eye movement analysis using automatic classification algorithms. J. Neurosci. Methods 201(1), 196–203 (2011)

    Article  Google Scholar 

  66. W.A. Chaovalitwongse, Y.-J. Fan, R.C. Sachdeo, On the time series k-nearest neighbor classification of abnormal brain activity. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 37(6), 1005–1016 (2007)

    Article  Google Scholar 

  67. D. Abásolo, et al. Approximate entropy and mutual information analysis of the electroencephalogram in Alzheimer’s disease patients. in Advances in medical, signal and information processing, 2006. MEDSIP 2006. IET 3rd international conference on (IET 2006)

    Google Scholar 

  68. J. Escudero et al., Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol. Meas. 27(11), 1091 (2006)

    Article  Google Scholar 

  69. D. Abásolo et al., Approximate entropy and auto mutual information analysis of the electroencephalogram in Alzheimer’s disease patients. Med. Biol. Eng. Comput. 46(10), 1019–1028 (2008)

    Article  Google Scholar 

  70. E. Bullmore, O. Sporns, Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  71. X. Jie, R. Cao, L. Li, Emotion recognition based on the sample entropy of EEG. Biomed. Mater. Eng. 24(1), 1185–1192 (2014)

    Google Scholar 

  72. T. Brott et al., Measurements of acute cerebral infarction: A clinical examination scale. Stroke 20(7), 864–870 (1989)

    Article  Google Scholar 

  73. M.F. Folstein, L.N. Robins, J.E. Helzer, The mini-mental state examination. Arch Gen Psychiatry 40, 812 (1983)

    Google Scholar 

  74. T. Smith, N. Gildeh, C. Holmes, The Montreal cognitive assessment: Validity and utility in a memory clinic setting. Can. J. Psychiatr. 52(5), 329 (2007)

    Article  Google Scholar 

  75. J. Escudero, et al., Blind source separation to enhance spectral and non-linear features of magnetoencephalogram recordings. Application to Alzheimer’s disease. Med. Eng. Phys., 2009. 31(7): p. 872–879

    Google Scholar 

  76. G. Barbati et al., Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals. Clin. Neurophysiol. 115(5), 1220–1232 (2004)

    Article  Google Scholar 

  77. C.J. James, C.W. Hesse, Independent component analysis for biomedical signals. Physiol. Meas. 26(1), R15 (2005)

    Article  Google Scholar 

  78. J. Escudero et al., Artifact removal in magnetoencephalogram background activity with independent component analysis. Biomed. Eng. IEEE Trans. 54(11), 1965–1973 (2007)

    Article  Google Scholar 

  79. A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  80. N.K. Al-Qazzaz, et al., Entropy-Based Markers of EEG Background Activity of Stroke-Related Mild Cognitive Impairment and Vascular Dementia Patients, in 2nd International Conference on Sensors Engineering and Electronics Instrumental Advances (SEIA’ 2016) 2016: Barcelona, Spain. p. 92-94

    Google Scholar 

  81. W. Chen et al., Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 15(2), 266–272 (2007)

    Article  Google Scholar 

  82. N.V. Chawla et al., SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  83. R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. in Ijcai. (1995)

    Google Scholar 

  84. Y. Song, J. Zhang, Discriminating preictal and interictal brain states in intracranial EEG by sample entropy and extreme learning machine. J. Neurosci. Methods 257, 45–54 (2016)

    Article  Google Scholar 

  85. I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, 2005)

    MATH  Google Scholar 

  86. M. Hall et al., The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  87. H. Esmaiel et al., Multi-stage feature extraction and classification for ship-radiated noise. Sensors 22(1), 112 (2021)

    Article  Google Scholar 

  88. N.K. Al-Qazzaz, et al. The role of spectral power ratio in characterizing emotional EEG for gender identification. In 2020 IEEE-EMBS conference on biomedical engineering and sciences (IECBES). (IEEE 2021)

    Google Scholar 

  89. S.E. Sánchez-Hernández et al., Evaluation of feature selection methods for classification of epileptic seizure EEG signals. Sensors 22(8), 3066 (2022)

    Article  Google Scholar 

  90. H. Cai et al., Study on feature selection methods for depression detection using three-electrode EEG data. Interdiscip. Sci. Comput. Life Sci. 10(3), 558–565 (2018)

    Article  Google Scholar 

  91. H. Cai et al., A pervasive approach to EEG-based depression detection. Complexity 2018, 1–3 (2018)

    Google Scholar 

  92. Y. Li et al., EEG-based mild depressive detection using differential evolution. IEEE Access 7, 7814–7822 (2018)

    Article  Google Scholar 

  93. H. Peng et al., Multivariate pattern analysis of EEG-based functional connectivity: A study on the identification of depression. IEEE Access 7, 92630–92641 (2019)

    Article  Google Scholar 

  94. S. Mahato et al., Detection of depression and scaling of severity using six channel EEG data. J. Med. Syst. 44(7), 1–12 (2020)

    Article  MathSciNet  Google Scholar 

  95. J. Zhu et al., An improved classification model for depression detection using EEG and eye tracking data. IEEE Trans. Nanobioscience 19(3), 527–537 (2020)

    Article  Google Scholar 

  96. R.A. Movahed et al., A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis. J. Neurosci. Methods 358, 109209 (2021)

    Article  Google Scholar 

  97. Y. Narayan, Motor-imagery EEG signals Classificationusing SVM, MLP and LDA classifiers. TURCOMAT 12(2), 3339–3344 (2021)

    Article  Google Scholar 

  98. N.K. Al-Qazzaz et al., An integrated entropy-spatial framework for automatic gender recognition enhancement of emotion-based EEGs. Med. Biol. Eng. Comput. 60, 531–550 (2022)

    Article  Google Scholar 

  99. N.K. Al-Qazzaz et al., EEG wavelet spectral analysis during a working memory tasks in stroke-related mild cognitive impairment patients, in International Conference for Innovation in Biomedical Engineering and Life Sciences, (Springer, 2015)

    Google Scholar 

  100. N.K. Al-Qazzaz, et al. Entropy-based markers of EEG background activity of stroke-related mild cognitive impairment and vascular dementia patients. in Sensors and electronic instrumentation advances: proceedings of the 2nd international conference on sensors and electronic instrumentation advances (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Kamal Al-Qazzaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Qazzaz, N.K., Ali, S.H.B.M., Ahmad, S.A. (2024). Verbesserung der Erkennung des Arbeitsgedächtnisses von Demenz-Patienten mithilfe von Entropie-basierten Merkmalen und dem Local Tangent Space Alignment Algorithmus. In: Qaisar, S.M., Nisar, H., Subasi, A. (eds) Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-52856-9_14

Download citation

Publish with us

Policies and ethics