Skip to main content

Biomedizinische Signalverarbeitung für die automatisierte Erkennung von Schlafarousals, basierend auf Multi-Physiologischen Signalen mit Ensemble-Lernmethoden

  • Chapter
  • First Online:
Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML

Zusammenfassung

Schlafbezogene Atmungsstörungen wie Schlafapnoe und Hypopnoe sind potenziell ernste Störungen und können die Ursache für eine Vielzahl von körperlichen und geistigen Gesundheitsproblemen sein und zudem die Lebensqualität reduzieren. Daher sind Schlafstudien unerlässlich zur Identifizierung und Behandlung dieser Schlafstörungen. Diese Studie zielt darauf ab, Erregungsregionen, die durch nicht-apnoeischen und nicht-hypopnoeischen Schlaf in Polysomnographie-Signalen verursacht werden, mithilfe von Ensemble-Techniken zu erkennen. Der in dieser Studie verwendete Datensatz bezieht sich auf Polysomnographie-Messkanäle von 100 Patienten, die in der Physionet Challenge-Datenbank von 2018 bereitgestellt wurden. Die Daten wurden in kleine Epochen mit 50 % Überlappung aufgeteilt. Aus jeder Epoche wurden mehrere unterschiedliche Merkmale im Zeit- und Frequenzbereich extrahiert. Der Wilcoxon-Rangsummentest und der genetische Algorithmus-Optimierungsalgorithmus wurden verwendet, um einen Satz von Merkmalen mit den meisten diskriminierenden Informationen zu finden. Eine Technik zur Datenvermehrung wurde verwendet, um das Problem der unausgeglichenen Daten anzugehen. Für die endgültige Klassifikation wurden lineare Diskriminanzanalyse, logistische Regression, bagged tree aus der Bagging-Technik und LightGBM aus der Boosting-Methode angewendet. Basierend auf den Physionet Challenge-Indizes, der Fläche unter der Receiver-Operating-Characteristic-Kurve (AUROC) und der Fläche unter der Precision-Recall-Kurve (AUPRC), verglichen wir die Leistung der Klassifikatoren auf diesem Datensatz. Die höchste Leistung bei 20 Testpersonen betrug 0,497 für AUPRC und 0,878 für AUROC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. M.K. Pavlova, V. Latreille, Sleep disorders. Am. J. Med. 132(3), 292–299 (2019)

    Article  Google Scholar 

  2. W. Wen, Sleep quality detection based on EEG signals using transfer support vector machine algorithm, Front. Neurosci. 15 (2021)

    Google Scholar 

  3. H. Ragnarsdóttir, B. Marinósson, E. Finnsson, E. Gunnlaugsson, J.S. Ágústsson, H. Helgadóttir, Automatic detection of target regions of respiratory effort-related arousals using recurrent neural networks, in 2018 Computing in Cardiology Conference (CinC), (2018), vol. 45: IEEE, pp. 1–4

    Google Scholar 

  4. M. Diykh, Y. Li, Complex networks approach for EEG signal sleep stages classification. Expert Syst. Appl. 63, 241–248 (2016)

    Article  Google Scholar 

  5. E. Scoring, EEG arousals: Scoring rules and examples: A preliminary report from the sleep disorders atlas task force of the American sleep disorders association. Sleep 15(2), 174–184 (1992)

    Article  Google Scholar 

  6. R.K. Malhotra, A.Y. Avidan, Sleep stages and scoring technique. Atlas Sleep Med., 77–99 (2013)

    Google Scholar 

  7. T. Penzel, S. Canisius, Polysomnography, in Sleep Apnea, vol. 35: (Karger Publishers, 2006), pp. 51–60

    Google Scholar 

  8. D. Álvarez-Estévez, V. Moret-Bonillo, Identification of electroencephalographic arousals in multichannel sleep recordings. IEEE Trans. Biomed. Eng. 58(1), 54–63 (2010)

    Article  Google Scholar 

  9. S. Mariani, S.M. Purcell, S. Redline, Automated processing of big data in sleep medicine, in Signal Processing and Machine Learning for Biomedical Big Data, (CRC Press, 2018), pp. 443–463

    Google Scholar 

  10. R. Heinzer et al., Prevalence of sleep-disordered breathing in the general population: The HypnoLaus study. Lancet Respir. Med. 3(4), 310–318 (2015)

    Article  Google Scholar 

  11. S. Cho, J. Lee, H. Park, K. Lee, Detection of arousals in patients with respiratory sleep disorders using a single channel EEG, in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, (2006) IEEE, pp. 2733–2735

    Google Scholar 

  12. D. Chylinski et al., Validation of an automatic arousal detection algorithm for whole-night sleep EEG recordings. Clocks & sleep 2(3), 258–272 (2020)

    Article  Google Scholar 

  13. A.H. Khandoker, J. Gubbi, M. Palaniswami, Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings. IEEE Trans. Inf. Technol. Biomed. 13(6), 1057–1067 (2009)

    Article  Google Scholar 

  14. R. Lazazzera et al., Detection and classification of sleep apnea and hypopnea using PPG and SpO $ _2 $ signals. IEEE Trans. Biomed. Eng. 68(5), 1496–1506 (2020)

    Article  Google Scholar 

  15. T. Sugi, F. Kawana, M. Nakamura, Automatic EEG arousal detection for sleep apnea syndrome. Biomed. Signal Proc. Control 4(4), 329–337 (2009)

    Article  Google Scholar 

  16. M.M. Ghassemi et al., You snooze, you win: the physionet/computing in cardiology challenge 2018,“ in 2018 Computing in Cardiology Conference (CinC), (2018), vol. 45: IEEE, pp. 1–4

    Google Scholar 

  17. V. Tsara, A. Amfilochiou, M. Papagrigorakis, D. Georgopoulos, E. Liolios, Guidelines for diagnosis and treatment of sleep-related breathing disorders in adults and children. Definition and classification of sleep related breathing disorders in adults: Different types and indications for sleep studies (part 1). Hippokratia 13(3), 187–191 (2009)

    Google Scholar 

  18. E. J. Olson, W. R. Moore, T. I. Morgenthaler, P. C. Gay, B. A. Staats, Obstructive sleep apnea-hypopnea syndrome, in Mayo Clinic Proceedings, vol. 78, no. 12: Elsevier, 2003, pp. 1545–1552

    Google Scholar 

  19. J.F.M. Jiménez, M.R. González, L.J. Findley, Sleepy drivers have a high frequency of traffic accidents related to respiratory effort-related arousals. Archivos de bronconeumologia 39(4), 153–158 (2003)

    Google Scholar 

  20. M. Howe-Patterson, B. Pourbabaee, F. Benard, Automated detection of sleep arousals from polysomnography data using a dense convolutional neural network, in 2018 Computing in Cardiology Conference (CinC), (2018), vol. 45: IEEE, pp. 1–4

    Google Scholar 

  21. R. He et al., Identification of arousals with deep neural networks (DNNs) using different physiological signals, in 2018 Computing in Cardiology Conference (CinC) (2018), vol. 45: IEEE, pp. 1–4

    Google Scholar 

  22. A. Patane, S. Ghiasi, E. P. Scilingo, M. Kwiatkowska, Automated recognition of sleep arousal using multimodal and personalized deep ensembles of neural networks, in 2018 Computing in Cardiology Conference (CinC), (2018), vol. 45: IEEE, pp. 1–4

    Google Scholar 

  23. P. Warrick and M. N. Homsi, ”Sleep arousal detection from polysomnography using the scattering transform and recurrent neural networks,“ in 2018 Computing in Cardiology Conference (CinC), 2018, vol. 45: IEEE, pp. 1–4

    Google Scholar 

  24. H. Li, Q. Cao, Y. Zhong, Y. Pan, Sleep arousal detection using end-to-end deep learning method based on multi-physiological signals, in 2018 Computing in Cardiology Conference (CinC), (2018), vol. 45: IEEE, pp. 1–4

    Google Scholar 

  25. B. Varga, M. Görög, P. Hajas, Using auxiliary loss to improve sleep arousal detection with neural network, in 2018 Computing in Cardiology Conference (CinC), (2018), vol. 45: IEEE, pp. 1–4

    Google Scholar 

  26. N. Sadr, P. de Chazal, Automatic scoring of non-apnoea arousals using the polysomnogram, in 2018 Computing in Cardiology Conference (CinC), (2018), vol. 45: IEEE, pp. 1–4

    Google Scholar 

  27. K.E. Bloch, Polysomnography: A systematic review. Technol. Health Care 5(4), 285–305 (1997)

    Article  Google Scholar 

  28. V.R. Badrakalimuthu, R. Swamiraju, H. de Waal, EEG in psychiatric practice: To do or not to do? Adv. Psychiatr. Treat. 17(2), 114–121 (2011)

    Article  Google Scholar 

  29. C.L. Drake, K.M. Mason, S.M. Bowyer, T. Roth, G.L. Barkley, N. Tepley, Vertex sharp waves during sleep localized by 2DII. Cortex 1, 8 (2002)

    Google Scholar 

  30. M. Schönauer, D. Pöhlchen, Sleep spindles. Curr. Biol. 28(19), R1129–R1130 (2018)

    Article  Google Scholar 

  31. S. Tong and N. V. Thankor, Quantitative EEG Analysis Methods and Clinical Applications. Artech House, 2009

    Google Scholar 

  32. M. Sharma, D. Goyal, P. Achuth, U.R. Acharya, An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank. Comput. Biol. Med. 98, 58–75 (2018)

    Article  Google Scholar 

  33. H. Rao et al., Feature selection based on artificial bee colony and gradient boosting decision tree. Appl. Soft Comput. 74, 634–642 (2019)

    Article  Google Scholar 

  34. G. Ke et al., Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Proces. Syst. 30, 3146–3154 (2017)

    Google Scholar 

  35. J. Brownlee, how to Develop a Light Gradient Boosted Machine (LightGBM) Ensemble, ed (2020)

    Google Scholar 

  36. M. Thoma, Wikimedia Commons, the free media repository, Roc-draft-xkcd-style.svg, Ed., ed (June 2018)

    Google Scholar 

  37. Draelos. Measuring Performance: AUPRC and Average Precision. https://glassboxmedicine.com/2019/03/02/measuring-performance-auprc/. Zugriff auf

  38. A. A. Gharbali, J. M. Fonseca, S. Najdi, and T. Y. Rezaii, „Automatic eog and emg artifact removal method for sleep stage classification,“ in Doctoral Conference on Computing, Electrical and Industrial Systems, 2016: Springer, pp. 142–150

    Google Scholar 

  39. P. Shooshtari, G. Mohammadi, B. Molaee Ardekani, M. B. Shamsollahi, Removing ocular artifacts from EEG signals using adaptive filtering and ARMAX modeling, in Proceeding of World Academy of Science, Engineering and Technology, vol. 11, no. CONF, (2006) pp. 277–280

    Google Scholar 

  40. X. Jiang, G.-B. Bian, Z. Tian, Removal of artifacts from EEG signals: a review. Sensors 19(5), 987 (2019)

    Article  Google Scholar 

  41. X. Li, S.H. Ling, S. Su, A hybrid feature selection and extraction methods for sleep apnea detection using bio-signals. Sensors 20(15), 4323 (2020)

    Article  Google Scholar 

  42. C. Vidaurre, N. Krämer, B. Blankertz, A. Schlögl, Time domain parameters as a feature for EEG-based brain–computer interfaces. Neural Netw. 22(9), 1313–1319 (2009)

    Article  Google Scholar 

  43. J.V. Liu, H.K. Yaggi, Characterization of Arousals in Polysomnography Using the Statistical Significance of Power Change, in 2018 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (2018): IEEE, pp. 1–6

    Google Scholar 

  44. B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636–638 (1967)

    Article  Google Scholar 

  45. E.B. Sadeghian, M.H. Moradi, Fractal dimension for detection of ERD/ERS patterns in asynchronous brain computer interface, in 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, (2008): IEEE, pp. 560–563

    Google Scholar 

  46. C.-T. Shi, Signal pattern recognition based on fractal features and machine learning. Appl. Sci. 8(8), 1327 (2018)

    Article  Google Scholar 

  47. A. Yilmaz, G. Unal, Multiscale Higuchi’s fractal dimension method. Nonlinear Dynamics 101(2), 1441–1455 (2020)

    Article  Google Scholar 

  48. A. Adda, H. Benoudnine, Detrended fluctuation analysis of EEG recordings for epileptic seizure detection, in 2016 International Conference on Bio-engineering for Smart Technologies (BioSMART), (2016): IEEE, pp. 1–4

    Google Scholar 

  49. V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, Feature Selection for High-Dimensional Data (Springer, 2015)

    Google Scholar 

  50. C.-j. Tian, J. Lv, X.-f. Xu, Evaluation of feature selection methods for mammographic breast cancer diagnosis in a unified framework. BioMed Res. Int. 2021, 1–9 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hasan Moradi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jalili Shani, N.S., Moradi, M.H. (2024). Biomedizinische Signalverarbeitung für die automatisierte Erkennung von Schlafarousals, basierend auf Multi-Physiologischen Signalen mit Ensemble-Lernmethoden. In: Qaisar, S.M., Nisar, H., Subasi, A. (eds) Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-52856-9_11

Download citation

Publish with us

Policies and ethics