Skip to main content

Cultivating a Greener Tomorrow: Sustainable Agriculture Strategies for Minimizing Agricultural Waste

  • Chapter
  • First Online:
Valorization of Biomass Wastes for Environmental Sustainability

Abstract

Agriculture that is truly sustainable must incorporate social, economic, and environmental sustainability. Increased awareness of the need for enhanced agricultural productivity stems from the requirement to feed a growing population. It is interesting that virtually all agricultural activities generate waste, and many nations produce substantial volumes of waste. Recent observations from our study reveal that globally, agricultural activities generate approximately five billion tons of waste each year. However, the improper disposal of these wastes can lead to staggering financial losses, estimated at around $300 billion annually, and severe environmental contamination, posing significant threats to human health. Every state and nation, on average, produces a substantial amount of waste every year, estimated at 200 million tons, or every 6 months. Hence, it is imperative that this waste is disposed of properly, recycled, or utilized to create value for the environment and agriculture. We find that “reducing,” “reusing,” and “recycling” field waste can significantly reduce the environmental footprint of agricultural practices, potentially reducing greenhouse gas emissions by up to 25% and conserving water resources by 15%. This chapter focuses on effective strategies for managing these wastes, including building a more sustainable agricultural supply chain, developing long-lasting markets, and enhancing rural infrastructures such as roads, storage, and power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agamuthu, P. (2009). Challenges and opportunities in agro-waste management: An Asian perspective. In Inaugural meeting of first regional 3R forum in Asia (Vol. 11, 12). University of Malaysia.

    Google Scholar 

  • Altieri, M. A. (2002). Agroecology: The science of natural resource management for poor farmers in marginal environments. Agriculture, Ecosystems & Environment, 93(1–3), 1–24.

    Article  Google Scholar 

  • Benatti, A. L. T., & Polizeli, M. D. L. T. D. M. (2023). Lignocellulolytic biocatalysts: The main players involved in multiple biotechnological processes for biomass valorization. Microorganisms, 11(1), 162.

    Article  CAS  Google Scholar 

  • Blay-Palmer, A., Sonnino, R., & Custot, J. (2016). A food politics of the possible? Growing sustainable food systems through networks of knowledge. Agriculture and Human Values, 33, 27–43.

    Article  Google Scholar 

  • Bosecker, K. (1997). Bioleaching: Metal solubilization by microorganisms. FEMS Microbiology Reviews, 20(3–4), 591–604.

    Article  CAS  Google Scholar 

  • Boserup, E. (1975). The impact of population growth on agricultural output. The Quarterly Journal of Economics, 89(2), 257–270.

    Article  Google Scholar 

  • Bouallagui, H., Touhami, Y., Cheikh, R. B., & Hamdi, M. (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, 40(3–4), 989–995.

    Article  CAS  Google Scholar 

  • Bracco, S., Calicioglu, O., Gomez San Juan, M., & Flammini, A. (2018). Assessing the contribution of bioeconomy to the total economy: A review of national frameworks. Sustainability, 10(6), 1698.

    Article  Google Scholar 

  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.

    Article  CAS  Google Scholar 

  • Chi, X., Wang, M. Y., & Reuter, M. A. (2014). E-waste collection channels and household recycling behaviors in Taizhou of China. Journal of Cleaner Production, 80, 87–95.

    Article  Google Scholar 

  • Chiellini, E., Corti, A., & Swift, G. (2003). Biodegradation of thermally-oxidized, fragmented low-density polyethylenes. Polymer Degradation and Stability, 81(2), 341–351.

    Article  CAS  Google Scholar 

  • Conti, F., Toor, S. S., Pedersen, T. H., Seehar, T. H., Nielsen, A. H., & Rosendahl, L. A. (2020). Valorization of animal and human wastes through hydrothermal liquefaction for biocrude production and simultaneous recovery of nutrients. Energy Conversion and Management, 216, 112925.

    Article  CAS  Google Scholar 

  • Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146–1151.

    Article  CAS  Google Scholar 

  • Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305.

    Article  Google Scholar 

  • Diaz, L. F., Savage, G. M., & Eggerth, L. L. (2005). Alternatives for the treatment and disposal of healthcare wastes in developing countries. Waste Management, 25(6), 626–637.

    Article  CAS  Google Scholar 

  • Diener, S., Zurbrügg, C., & Tockner, K. (2009). Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Management & Research, 27(6), 603–610.

    Article  CAS  Google Scholar 

  • Dorward, A., Poole, N., Morrison, J., Kydd, J., & Urey, I. (2003). Markets, institutions and technology: Missing links in livelihoods analysis. Development Policy Review, 21(3), 319–332.

    Article  Google Scholar 

  • Duque-Acevedo, M., Belmonte-Ureña, L. J., Cortés-García, F. J., & Camacho-Ferre, F. (2020). Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, 22, e00902.

    Article  Google Scholar 

  • Erb, K. H., Lauk, C., Kastner, T., Mayer, A., Theurl, M. C., & Haberl, H. (2016). Exploring the biophysical option space for feeding the world without deforestation. Nature Communications, 7(1), 11382.

    Article  CAS  Google Scholar 

  • Ezekannagha, E. (2020). Assessing the climatic suitability of Bambara groundnut as an underutilised crop to future climate projections in Sikasso and Ségou, Mali (Master’s thesis, Faculty of Science).

    Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  CAS  Google Scholar 

  • Gurr, G. M., Lu, Z., Zheng, X., Xu, H., Zhu, P., Chen, G., Yao, X., Cheng, J., Zhu, Z., Catindig, J. L., & Villareal, S. (2016). Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nature Plants, 2(3), 1–4.

    Article  Google Scholar 

  • Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., & Chau, K. W. (2019). Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. Science of the Total Environment, 664, 1005–1019.

    Article  CAS  Google Scholar 

  • Koop, S. H., & van Leeuwen, C. J. (2017). The challenges of water, waste and climate change in cities. Environment, Development and Sustainability, 19(2), 385–418.

    Article  Google Scholar 

  • Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285.

    Article  CAS  Google Scholar 

  • Kumar, R., & Pal, P. (2015). Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: A review. Environmental Science and Pollution Research, 22, 17453–17464.

    Article  CAS  Google Scholar 

  • Mariyono, J. (2020). Improvement of economic and sustainability performance of agribusiness management using ecological technologies in Indonesia. International Journal of Productivity and Performance Management, 69(5), 989–1008.

    Article  Google Scholar 

  • Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10, 19–26.

    Article  CAS  Google Scholar 

  • Moshontz, H., Campbell, L., Ebersole, C. R., IJzerman, H., Urry, H. L., Forscher, P. S., Grahe, J. E., McCarthy, R. J., Musser, E. D., Antfolk, J., & Castille, C. M. (2018). The Psychological Science Accelerator: Advancing psychology through a distributed collaborative network. Advances in Methods and Practices in Psychological Science, 1(4), 501–515.

    Article  Google Scholar 

  • Moshou, D., Bravo, C., Oberti, R., West, J., Bodria, L., McCartney, A., & Ramon, H. (2005). Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real-Time Imaging, 11(2), 75–83.

    Article  Google Scholar 

  • Neher, D. (2018). Ecological sustainability in agricultural systems: Definition and measurement. In Integrating sustainable agriculture, ecology, and environmental policy (pp. 51–61). Routledge.

    Chapter  Google Scholar 

  • Nigussie, A., Kuyper, T. W., & de Neergaard, A. (2015). Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia. Waste Management, 44, 82–93.

    Article  Google Scholar 

  • Odebiri, O., Mutanga, O., Odindi, J., Peerbhay, K., & Dovey, S. (2020). Predicting soil organic carbon stocks under commercial forest plantations in KwaZulu-Natal province, South Africa using remotely sensed data. GIScience & Remote Sensing, 57(4), 450–463.

    Article  Google Scholar 

  • Parawira, W. (2009). Biogas technology in sub-Saharan Africa: Status, prospects and constraints. Reviews in Environmental Science and Bio/Technology, 8, 187–200.

    Article  CAS  Google Scholar 

  • Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Food waste within food supply chains: Quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 3065–3081.

    Article  Google Scholar 

  • Pretty, J. (2008). Agricultural sustainability: Concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 447–465.

    Article  Google Scholar 

  • Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2(2), 1–8.

    Article  Google Scholar 

  • Sabiiti, E. N. (2011). Utilising agricultural waste to enhance food security and conserve the environment. African Journal of Food, Agriculture, Nutrition and Development, 11(6), 1–9.

    Google Scholar 

  • Sáez, J. A., Pérez-Murcia, M. D., Vico, A., Martínez-Gallardo, M. R., Andreu-Rodríguez, F. J., López, M. J., Bustamante, M. A., Sanchez-Hernandez, J. C., Moreno, J., & Moral, R. (2021). Olive mill wastewater-evaporation ponds long term stored: Integrated assessment of in situ bioremediation strategies based on composting and vermicomposting. Journal of Hazardous Materials, 402, 123481.

    Article  Google Scholar 

  • Scarlat, N., Dallemand, J. F., & Fahl, F. (2018). Biogas: Developments and perspectives in Europe. Renewable Energy, 129, 457–472.

    Article  Google Scholar 

  • Scarlat, N., Dallemand, J. F., Monforti-Ferrario, F., Banja, M., & Motola, V. (2015). Renewable energy policy framework and bioenergy contribution in the European Union–An overview from National Renewable Energy Action Plans and Progress Reports. Renewable and Sustainable Energy Reviews, 51, 969–985.

    Google Scholar 

  • Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T. H. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238–1240.

    Article  CAS  Google Scholar 

  • Seidavi, A. R., Zaker-Esteghamati, H., & Scanes, C. G. (2019). Present and potential impacts of waste from poultry production on the environment. World’s Poultry Science Journal, 75(1), 29–42.

    Article  Google Scholar 

  • Sheikh, M. R., Ali, N. A., & Aslam, A. (2022). Food wastage footprint, food security, environment and economic growth nexus in developing countries. InTech.

    Google Scholar 

  • Shyamsundar, P., Springer, N. P., Tallis, H., Polasky, S., Jat, M. L., Sidhu, H. S., Krishnapriya, P. P., Skiba, N., Ginn, W., Ahuja, V., & Cummins, J. (2019). Fields on fire: Alternatives to crop residue burning in India. Science, 365(6453), 536–538.

    Article  CAS  Google Scholar 

  • Siciliano, A., & Rosa, S. D. (2014). Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents. Environmental Technology, 35(7), 841–850.

    Article  CAS  Google Scholar 

  • Singh, Y., & Sidhu, H. S. (2014). Management of cereal crop residues for sustainable rice-wheat production system in the Indo-Gangetic plains of India. Proceedings of the Indian National Science Academy, 80(1), 95–114.

    Article  CAS  Google Scholar 

  • Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J., Jafari, M., & Masera, O. (2014). Agriculture, forestry and other land use (AFOLU). In Climate change 2014: Mitigation of climate change (Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change) (pp. 811–922). Cambridge University Press.

    Google Scholar 

  • Sreekrishnan, T. R., Kohli, S., & Rana, V. (2004). Enhancement of biogas production from solid substrates using different techniques––A review. Bioresource Technology, 95(1), 1–10.

    Article  Google Scholar 

  • Tripathi, N., Hills, C. D., Singh, R. S., & Atkinson, C. J. (2019). Biomass waste utilisation in low-carbon products: Harnessing a major potential resource. npj Climate and Atmospheric Science, 2(1), 35.

    Article  Google Scholar 

  • Turner, W., Rondinini, C., Pettorelli, N., Mora, B., Leidner, A. K., Szantoi, Z., Buchanan, G., Dech, S., Dwyer, J., Herold, M., & Koh, L. P. (2015). Free and open-access satellite data are key to biodiversity conservation. Biological Conservation, 182, 173–176.

    Article  Google Scholar 

  • Wahid, A., & Nararya, R. N. (2015). Optimasi Pengendalian Unit Gasifikasi dan Char Combustor pada Pabrik Biohidrogen dari Biomassa Menggunakan Reidentifikasi Model Predictive Control. In Prosiding Seminar Nasional Teknik Kimia Indonesia V (pp. 12–13). Universitas Gadjah Mada.

    Google Scholar 

  • Wang, F., Zhao, H., Xiang, H., Wu, L., Men, X., Qi, C., Chen, G., Zhang, H., Wang, Y., & Xian, M. (2018). Species diversity and functional prediction of surface bacterial communities on aging flue-cured tobaccos. Current Microbiology, 75, 1306–1315.

    Article  CAS  Google Scholar 

  • Westerman, P. W., & Bicudo, J. R. (2005). Management considerations for organic waste use in agriculture. Bioresource Technology, 96(2), 215–221.

    Article  CAS  Google Scholar 

  • Wood, S. L., Jones, S. K., Johnson, J. A., Brauman, K. A., Chaplin-Kramer, R., Fremier, A., Girvetz, E., Gordon, L. J., Kappel, C. V., Mandle, L., & Mulligan, M. (2018). Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosystem Services, 29, 70–82.

    Article  Google Scholar 

  • Zhang, P., Li, Z., Ghardallou, W., Xin, Y., & Cao, J. (2023). Nexus of institutional quality and technological innovation on renewable energy development: Moderating role of green finance. Renewable Energy, 214, 233–241.

    Google Scholar 

  • Zhang, X., He, L., Zhang, J., Whiting, M. D., Karkee, M., & Zhang, Q. (2020). Determination of key canopy parameters for mass mechanical apple harvesting using supervised machine learning and principal component analysis (PCA). Biosystems Engineering, 193, 247–263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharti, D., Sharma, A., Sharma, M., Singh, R., Kumar, A., Saxena, R. (2024). Cultivating a Greener Tomorrow: Sustainable Agriculture Strategies for Minimizing Agricultural Waste. In: Srivastav, A.L., Bhardwaj, A.K., Kumar, M. (eds) Valorization of Biomass Wastes for Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-031-52485-1_18

Download citation

Publish with us

Policies and ethics