Skip to main content

NoSENSE: Learned Unrolled Cardiac MRI Reconstruction Without Explicit Sensitivity Maps

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14507))

Abstract

We present a novel learned image reconstruction method for accelerated cardiac MRI with multiple receiver coils based on deep convolutional neural networks (CNNs) and algorithm unrolling. In contrast to many existing learned MR image reconstruction techniques that necessitate coil-sensitivity map (CSM) estimation as a distinct network component, our proposed approach avoids explicit CSM estimation. Instead, it implicitly captures and learns to exploit the inter-coil relationships of the images. Our method consists of a series of novel learned image and k-space blocks with shared latent information and adaptation to the acquisition parameters by feature-wise modulation (FiLM), as well as coil-wise data-consistency (DC) blocks.

Our method achieved PSNR values of 34.89 and 35.56 and SSIM values of 0.920 and 0.942 in the cine track and mapping track validation leaderboard of the MICCAI STACOM CMRxRecon Challenge, respectively, ranking 4th among different teams at the time of writing.

Code is available at https://github.com/fzimmermann89/CMRxRecon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322–1332 (2018). https://doi.org/10.1109/TMI.2018.2799231

    Article  Google Scholar 

  2. Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2019). doi.org/10/gg2nb6

    Google Scholar 

  3. Chen, T., Xu, B., Zhang, C., Guestrin, C.: Training Deep Nets with Sublinear Memory Cost (2016). https://doi.org/10.48550/arXiv.1604.06174

  4. Cheng, J., Wang, H., Ying, L., Liang, D.: Model learning: primal dual networks for fast MR imaging. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 21–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_3

    Chapter  Google Scholar 

  5. Duan, J., et al.: Vs-net: variable splitting network for accelerated parallel MRI reconstruction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 713–722. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_78

    Chapter  Google Scholar 

  6. Eo, T., Jun, Y., Kim, T., Jang, J., Lee, H.J., Hwang, D.: KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. MRM 80(5), 2188–2201 (2018). doi.org/10/gdbpc4

    Google Scholar 

  7. Gotmare, A., Shirish Keskar, N., Xiong, C., Socher, R.: A closer look at deep learning heuristics: learning rate restarts, warmup and distillation. In: ICLR (2019). https://doi.org/10.48550/arXiv.1810.13243

  8. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. MRM 79(6), 3055–3071 (2018). https://doi.org/10.1002/mrm.26977

    Article  Google Scholar 

  9. Hauptmann, A., Arridge, S., Lucka, F., Muthurangu, V., Steeden, J.A.: Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning. MRM 81(2), 1143–1156 (2019). doi.org/10/ggcg23

    Google Scholar 

  10. Knoll, F., et al.: Overview of the 2019 fastMRI challenge. MRM 84(6), 3054–3070 (2020). doi.org/10/gsmqdj

    Google Scholar 

  11. Kofler, A., Wald, C., Schaeffter, T., Haltmeier, M., Kolbitsch, C.: Convolutional dictionary learning by end-to-end training of iterative neural networks. In: European Signal Processing Conference. vol. 2022-August, pp. 1213–1217. IEEE (2022). doi.org/10/gsmqdf

    Google Scholar 

  12. Liu, R., et al.: An intriguing failing of convolutional neural networks and the CoordConv solution. In: NeurIPS, pp. 9605–9616 (2018). https://doi.org/10.48550/arXiv.1807.03247

  13. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019). https://doi.org/10.48550/arXiv.1711.05101

  14. McCollough, C.H., et al.: Results of the 2016 Low Dose CT Grand Challenge. Med. Phys. 44(10), e339–e352 (2017). doi.org/10/gcggv5

    Google Scholar 

  15. Monga, V., Li, Y., Eldar, Y.C.: Algorithm unrolling: interpretable, efficient deep learning for signal and image processing. IEEE Signal Process Mag. 38(2), 18–44 (2021). doi.org/10/gh5z3t

    Google Scholar 

  16. Muckley, M.J., Riemenschneider, B., Radmanesh, A.E.A.: Results of the 2020 fastMRI challenge for machine learning MR image reconstruction. IEEE Trans. Med. Imaging 40(9), 2306–2317 (2021). doi.org/10/gj24fq

    Google Scholar 

  17. Nichol, A., Dhariwal, P.: Improved denoising diffusion probabilistic models. Proc. Mach. Learn. Res. 139, 8162–8171 (2021). https://doi.org/10.48550/arXiv.2102.09672

  18. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: 2019 IEEE/CVF CVPR, pp. 2332–2341 (2019). https://doi.org/10.1109/CVPR.2019.00244

  19. Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: FiLM: visual reasoning with a general conditioning layer. In: 32nd AAAI Conference on Artificial Intelligence, pp. 3942–3951 (2018). doi.org/10/gsk6mb

    Google Scholar 

  20. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: Proceedings of the IEEE ICCV, vol. 2017-October, pp. 5534–5542 (2017). doi.org/10/ggz7r7

    Google Scholar 

  21. Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011). doi.org/10/c9dqs4

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018). doi.org/10/ggbv8j

    Google Scholar 

  24. Schwab, J., Antholzer, S., Haltmeier, M.: Deep null space learning for inverse problems: convergence analysis and rates. Inverse Prob. 35(2), 25008 (2019). doi.org/10/gfvm7t

    Google Scholar 

  25. Sriram, A., et al.: End-to-End variational networks for accelerated MRI reconstruction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 64–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_7

    Chapter  Google Scholar 

  26. Uecker, M., et al.: ESPIRiT - an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA. MRM 71(3), 990–1001 (2014). doi.org/10/gfvjn3

    Google Scholar 

  27. Wang, C., et al.: CMRxRecon: an open cardiac MRI dataset for the competition of accelerated image reconstruction (2023). https://doi.org/10.48550/arXiv.2309.10836

  28. Yaman, B., Hosseini, S.A.H., Moeller, S., Ellermann, J., Uğurbil, K., Akçakaya, M.: Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data. MRM 84(6), 3172–3191 (2020). doi.org/10/gj5thf

    Google Scholar 

  29. Yang, C., Zhao, Y., Huang, L., Xia, L., Tao, Q.: DisQ: disentangling quantitative MRI mapping of the heart. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 291–300. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_28

    Chapter  Google Scholar 

  30. Yiasemis, G., Sonke, J.J., Sanchez, C., Teuwen, J.: Recurrent variational network: a deep learning inverse problem solver applied to the task of accelerated MRI reconstruction. In: Proceedings of the IEEE CVPR, vol. 2022-June, pp. 722–731 (2022). doi.org/10/gq8r55

    Google Scholar 

  31. Zhou, G.B., Wu, J., Zhang, C.L., Zhou, Z.H.: Minimal gated unit for recurrent neural networks 13(3), 226–234 (2016). doi.org/10/gftp4q

    Google Scholar 

  32. Zimmermann, F.F., Kolbitsch, C., Schuenke, P., Kofler, A.: PINQI: an end-to-end physics-informed approach to learned quantitative MRI reconstruction, pp. 1–20 (2023). https://doi.org/10.48550/arXiv.2306.11023

Download references

Acknowledgments

This project has received funding from the European Partnership on Metrology, co-financed from the European Union’s Horizon Europe Research and Innovation Programme, and by the Participating States. This work was supported in part by the Metrology for Artificial Intelligence in Medicine (M4AIM) project, which is funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWi) as part of the QIDigital initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Frederik Zimmermann .

Editor information

Editors and Affiliations

Supplement

Supplement

See the Table 3.

Table 3. Challenge Participation Information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zimmermann, F.F., Kofler, A. (2024). NoSENSE: Learned Unrolled Cardiac MRI Reconstruction Without Explicit Sensitivity Maps. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics