Skip to main content

Bioreactor Design Selection for Biohydrogen Production Using Immobilized Cell Culture System

  • Chapter
  • First Online:
Green Hydrogen in Power Systems

Abstract

Biohydrogen, through biological or fermentation processes, is one of the best options for clean energy production, as the process consumes low energy and is more environmentally friendly. The process involves various types of substrates and microorganisms, where, in particular, the microorganisms could be a single or coculture, introduced as free cells or in immobilized form. Among the advantages of immobilized culture in fermentation is its ability to maximize the physical retention of microbial biomass while minimizing mass transfer. Various types of bioreactor setups can be considered to facilitate the fermentation process using immobilized culture, such as continuous stirred tank reactor (CSTR), upflow anaerobic sludge bioreactor (UASB), fluidized bed reactor (FBR), and packed/fixed bed reactor (PBR), or either in modified or integrated mode. This chapter focuses on the various bioreactor design that facilitates the fermentation process using immobilized culture for varying substrate and inoculum, both in batch and continuous systems. This chapter also compares the advantages and disadvantages of different bioreactor types, including the biohydrogen production performance of each bioreactor.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, G., & Lin, C.-Y. (2014, February). Biogenic hydrogen conversion of de-oiled jatropha waste via anaerobic sequencing batch reactor operation: Process performance, microbial insights, and CO2 reduction efficiency. Scientific World Journal, 2014, 946503. https://doi.org/10.1155/2014/946503

    Article  Google Scholar 

  2. Kim, D.-H., Kim, S.-H., Kim, K.-Y., & Shin, H.-S. (2010). Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste. International Journal of Hydrogen Energy, 35(4), 1590–1594. https://doi.org/10.1016/j.ijhydene.2009.12.041

    Article  Google Scholar 

  3. Li, C., & Fang, H. H. P. (2007). Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology, 37(1), 1–39. https://doi.org/10.1080/10643380600729071

    Article  MathSciNet  Google Scholar 

  4. Wu, K. J., & Chang, J. S. (2007). Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix. Process Biochemistry, 42(2), 279–284. https://doi.org/10.1016/j.procbio.2006.07.021

    Article  Google Scholar 

  5. Balachandar, G., Khanna, N., & Das, D. (2013). Chapter 6 – Biohydrogen production from organic wastes by dark fermentation. In Biohydrogen (1st ed.). Elsevier. https://doi.org/10.1016/B978-0-444-59555-3.00006-4

    Chapter  Google Scholar 

  6. Chang, J. (2002). Biohydrogen production with fixed-bed bioreactors. International Journal of Hydrogen Energy, 27(11–12), 1167–1174. https://doi.org/10.1016/s0360-3199(02)00130-1

    Article  Google Scholar 

  7. Wu, K.-J., Chang, C.-F., & Chang, J.-S. (2007). Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge. Process Biochemistry, 42(7), 1165–1171. https://doi.org/10.1016/j.procbio.2007.05.012

    Article  Google Scholar 

  8. De Graaff, M. S., Temmink, H., Zeeman, G., & Buisman, C. J. N. (2010). Anaerobic treatment of concentrated black water in a UASB reactor at a short HRT. Water (Basel), 2(1), 101–119. https://doi.org/10.3390/w2010101

    Article  Google Scholar 

  9. Arimi, M. M., Knodel, J., Kiprop, A., Namango, S. S., Zhang, Y., & Geißen, S.-U. (2015). Strategies for improvement of biohydrogen production from organic-rich wastewater: A review. Biomass and Bioenergy, 75, 101–118. https://doi.org/10.1016/j.biombioe.2015.02.011

    Article  Google Scholar 

  10. Zhao, L., et al. (2012). Enhanced bio-hydrogen production by immobilized clostridium sp. T2 on a new biological carrier. International Journal of Hydrogen Energy, 37(1), 162–166. https://doi.org/10.1016/j.ijhydene.2011.09.103

    Article  Google Scholar 

  11. Singh, L., Wahid, Z. A., Siddiqui, M. F., Ahmad, A., Rahim, M. H. A., & Sakinah, M. (2013). Biohydrogen production from palm oil mill effluent using immobilized Clostridium butyricum EB6 in polyethylene glycol. Process Biochemistry, 48(2), 294–298. https://doi.org/10.1016/j.procbio.2012.12.007

    Article  Google Scholar 

  12. Kao, P.-M., Hsu, B.-M., Huang, K.-H., Tao, C.-W., Chang, C.-M., & Ji, W.-T. (2014). Biohydrogen production by immobilized co-culture of Clostridium butyricum and Rhodopseudomonas palustris. Energy Procedia, 61, 834–837. https://doi.org/10.1016/j.egypro.2014.11.976

    Article  Google Scholar 

  13. Patel, S. K. S., Purohit, H. J., & Kalia, V. C. (2010). Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. International Journal of Hydrogen Energy, 35(19), 10674–10681. https://doi.org/10.1016/j.ijhydene.2010.03.025

    Article  Google Scholar 

  14. Tenca, A., Schievano, A., Perazzolo, F., Adani, F., & Oberti, R. (2011). Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: Maximizing stable production without pH control. Bioresource Technology, 102(18), 8582–8588. https://doi.org/10.1016/j.biortech.2011.03.102

    Article  Google Scholar 

  15. Chinellato, G., Cavinato, C., Bolzonella, D., Heaven, S., & Banks, C. J. (2013). Biohydrogen production from food waste in batch and semi-continuous conditions: Evaluation of a two-phase approach with digestate recirculation for pH control. International Journal of Hydrogen Energy, 38(11), 4351–4360. https://doi.org/10.1016/j.ijhydene.2013.01.078

    Article  Google Scholar 

  16. Mohan, S. V., Mohanakrishna, G., Reddy, S. S., Raju, B. D., Rao, K. S. R., & Sarma, P. N. (2008). Self-immobilization of acidogenic mixed consortia on mesoporous material (SBA-15) and activated carbon to enhance fermentative hydrogen production. International Journal of Hydrogen Energy, 33(21), 6133–6142. https://doi.org/10.1016/j.ijhydene.2008.07.096

    Article  Google Scholar 

  17. Engliman, N. S., Jahim, J. M., Abdul, P. M., Ling, T. P., Tan, J. P., & Ong, C. B. (2020, March). Effectiveness of fouling mechanism for bacterial immobilization in polyvinylidene fluoride membranes for biohydrogen fermentation. Food and Bioproducts Processing, 120, 48–57. https://doi.org/10.1016/J.FBP.2019.12.004

    Article  Google Scholar 

  18. Show, K.-Y., Lee, D.-J., & Chang, J.-S. (2011). Bioreactor and process design for biohydrogen production. Bioresource Technology, 102(18), 8524–8533. https://doi.org/10.1016/j.biortech.2011.04.055

    Article  Google Scholar 

  19. Sekoai, P. T., et al. (2017). Microbial cell immobilization in biohydrogen production: A short overview. Critical Reviews in Biotechnology, 38(2), 157–171. https://doi.org/10.1080/07388551.2017.1312274

    Article  Google Scholar 

  20. Liao, Q., Yang, Y. X., Zhu, X., Chen, R., & Fu, Q. (2017, January). Pore-scale lattice Boltzmann simulation of flow and mass transfer in bioreactor with an immobilized granule for biohydrogen production. Science Bulletin (Beijing), 62(1), 22–30. https://doi.org/10.1016/J.SCIB.2016.11.004

    Article  Google Scholar 

  21. Hallenbeck, P. C., & Ghosh, D. (2009, May). Advances in fermentative biohydrogen production: The way forward? Trends in Biotechnology, 27(5), 287–297. https://doi.org/10.1016/J.TIBTECH.2009.02.004

    Article  Google Scholar 

  22. Show, K.-Y., et al. (2010). Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater. International Journal of Hydrogen Energy, 35(24), 13350–13355. https://doi.org/10.1016/j.ijhydene.2009.11.110

    Article  Google Scholar 

  23. Barros, A. R., Adorno, M. A. T., Sakamoto, I. K., Maintinguer, S. I., Varesche, M. B. A., & Silva, E. L. (2011). Performance evaluation and phylogenetic characterization of anaerobic fluidized bed reactors using ground tire and pet as support materials for biohydrogen production. Bioresource Technology, 102(4), 3840–3847. https://doi.org/10.1016/j.biortech.2010.12.014

    Article  Google Scholar 

  24. Jones, J., Kindembe, D., Branton, H., Lawal, N., Montero, E.L., Mack, J., Shi, S., Patton, R. &Montague, G. (2023). Improved control strategies for the environment within cell culture bioreactors. Food and Bioproducts Processing, 138, 209–220. https://doi.org/10.1016/j.fbp.2023.02.004

  25. Singh, L., Siddiqui, M. F., Ahmad, A., Rahim, M. H. A., Sakinah, M., & Wahid, Z. A. (2013). Biohydrogen production from palm oil mill effluent using immobilized mixed culture. Journal of Industrial and Engineering Chemistry, 19(2), 659–664. https://doi.org/10.1016/j.jiec.2012.10.001

    Article  Google Scholar 

  26. Argun, H., & Kargi, F. (2011). Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview. International Journal of Hydrogen Energy, 36(13), 7443–7459. https://doi.org/10.1016/j.ijhydene.2011.03.116

    Article  Google Scholar 

  27. Basak, N., Jana, A. K., Das, D., & Saikia, D. (2014, April). Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: The present progress and future perspective. International Journal of Hydrogen Energy, 39(13), 6853–6871. https://doi.org/10.1016/j.ijhydene.2014.02.093

    Article  Google Scholar 

  28. Hu, B. (2013). Biological hydrogen production via self immobilized bacteria. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004

  29. Ri, P. C., et al. (2019, July). Effect of hydraulic retention time on the hydrogen production in a horizontal and vertical continuous stirred-tank reactor. International Journal of Hydrogen Energy, 44(33), 17742–17749. https://doi.org/10.1016/J.IJHYDENE.2019.05.136

    Article  Google Scholar 

  30. Sekoai, P., Yoro, K., & Daramola, M. (2016). Batch fermentative biohydrogen production process using immobilized anaerobic sludge from organic solid waste. Environments, 3(4), 38. https://doi.org/10.3390/environments3040038

    Article  Google Scholar 

  31. Hu, B., Liu, Y., Chi, Z., & Chen, S. (2007). Biological hydrogen production via bacteria immobilized in calcium alginate gel beads. Biological Engineering, 1(1), 25–37. https://doi.org/10.13031/2013.24191

  32. Rajesh Banu, J., et al. (2021). A critical review on limitations and enhancement strategies associated with biohydrogen production. International Journal of Hydrogen Energy, 46(31), 16565–16590. https://doi.org/10.1016/j.ijhydene.2021.01.075

    Article  Google Scholar 

  33. Abu Rahma, A. (2013). Biohydrogen production by modified anaerobic fluidized bed reactor (AFBR) using mixed bacterial cultures in thermophilic condition. Islamic University-Gaza. [Online]. Available: https://library.iugaza.edu.ps/thesis/111749.pdf. Accessed: 1 Oct 2023

    Google Scholar 

  34. Han, W., Wang, Z., Chen, H., Yao, X., & Li, Y. (2011). Simultaneous biohydrogen and bioethanol production from anaerobic fermentation with immobilized sludge, 2011, 1–6. https://doi.org/10.1155/2011/343791

  35. Keskin, T., Aksöyek, E., & Azbar, N. (2011). Comparative analysis of thermophilic immobilized biohydrogen production using packed materials of ceramic ring and pumice stone. International Journal of Hydrogen Energy, 36(23), 15160–15167. https://doi.org/10.1016/j.ijhydene.2011.08.078

    Article  Google Scholar 

  36. Han, W., Liu, D. N., Shi, Y. W., Tang, J. H., Li, Y. F., & Ren, N. Q. (2015). Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors. Bioresource Technology, 180, 54–58. https://doi.org/10.1016/j.biortech.2014.12.067

    Article  Google Scholar 

  37. Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555. https://doi.org/10.1016/j.rser.2015.02.032

    Article  Google Scholar 

  38. K. Stamatelatou, G. Antonopoulou, and P. Michailides, Biomethane and biohydrogen production via anaerobic digestion/fermentation. 2014. doi:https://doi.org/10.1533/9780857097385.2.476.

    Book  Google Scholar 

  39. Gómez, X., Fernández, C., Fierro, J., Sánchez, M. E., Escapa, A., & Morán, A. (2011). Hydrogen production: Two stage processes for waste degradation. Bioresource Technology, 102, 8621–8627. https://doi.org/10.1016/j.biortech.2011.03.055

    Article  Google Scholar 

  40. Ferguson, R. M. W., Coulon, F., & Villa, R. (2016). Organic loading rate: A promising microbial management tool in anaerobic digestion. Water Research, 100, 348–356. https://doi.org/10.1016/j.watres.2016.05.009

    Article  Google Scholar 

  41. Keskin, T., Giusti, L., & Azbar, N. (2012). Continuous biohydrogen production in immobilized biofilm system versus suspended cell culture. International Journal of Hydrogen Energy, 37(2), 1418–1424. https://doi.org/10.1016/j.ijhydene.2011.10.013

    Article  Google Scholar 

  42. Singh, L., Siddiqui, M. F., Ahmad, A., Rahim, M. H. Ab., Sakinah, M., & Wahid, Z. A. (2013). Application of polyethylene glycol immobilized Clostridium sp. LS2 for continuous hydrogen production from palm oil mill effluent in upflow anaerobic sludge blanket reactor. Biochemical Engineering Journal, 70, 158–165. https://doi.org/10.1016/j.bej.2012.10.010

  43. Zhang, Z., et al. (2023, June). Enhanced biohydrogen yield and light conversion efficiency during photo-fermentation using immobilized photo-catalytic nano-particles. Bioresource Technology, 377, 128931. https://doi.org/10.1016/J.BIORTECH.2023.128931

    Article  Google Scholar 

  44. Wannapokin, A., Huang, H. T., Chang, P. H., Chien, Y. W., & Hung, C. H. (2022, Decmber). Improving production of biohydrogen from COOH-functionalized multiwalled carbon nanotubes through co-immobilization with clostridium pasteurianum. International Journal of Hydrogen Energy, 47(96), 40704–40713. https://doi.org/10.1016/J.IJHYDENE.2022.09.095

    Article  Google Scholar 

  45. Hellal, M. S., Abou-Taleb, E. M., Rashad, A. M., & Hassan, G. K. (2022, July). Boosting biohydrogen production from dairy wastewater via sludge immobilized beads incorporated with polyaniline nanoparticles. Biomass and Bioenergy, 162, 106499. https://doi.org/10.1016/J.BIOMBIOE.2022.106499

    Article  Google Scholar 

  46. Woo, W. X., et al. (2022, Decmber). An overview on cell and enzyme immobilization for enhanced biohydrogen production from lignocellulosic biomass. International Journal of Hydrogen Energy, 47(96), 40714–40730. https://doi.org/10.1016/J.IJHYDENE.2022.08.164

    Article  Google Scholar 

  47. Zhao, C., et al. (2021, March). A developed hybrid fixed-bed bioreactor with Fe-modified zeolite to enhance and sustain biohydrogen production. Science of the Total Environment, 758, 143658. https://doi.org/10.1016/J.SCITOTENV.2020.143658

    Article  Google Scholar 

  48. Han, W., et al. (2015). Fermentative hydrogen production using wheat flour hydrolysate by mixed culture. International Journal of Hydrogen Energy, 40(13), 4474–4480. https://doi.org/10.1016/j.ijhydene.2015.02.016

    Article  Google Scholar 

  49. Gottardo, M., Cavinato, C., Bolzonella, D., & Pavan, P. (2013). Dark fermentation optimization by anaerobic digested sludge recirculation: Effects on hydrogen production. Chemical Engineering Transactions, 32, 997–1002. https://doi.org/10.3303/CET1332167

    Article  Google Scholar 

  50. Hu, B. (2013). Biological hydrogen production via self immobilized bacteria. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  51. Patel, S. K. S., Kumar, P., Mehariya, S., Purohit, H. J., Lee, J. K., & Kalia, V. C. (2014). Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. International Journal of Hydrogen Energy, 39(27), 14663–14668. https://doi.org/10.1016/j.ijhydene.2014.07.084

    Article  Google Scholar 

  52. Chandolias, K., Pardaev, S., & Taherzadeh, M. J. (2016). Biohydrogen and carboxylic acids production from wheat straw hydrolysate. Bioresource Technology, 216, 1093–1097. https://doi.org/10.1016/j.biortech.2016.05.119

    Article  Google Scholar 

  53. Patel, A. K., Vaisnav, N., Mathur, A., Gupta, R., & Tuli, D. K. (2016). Whey waste as potential feedstock for biohydrogen production. Renewable Energy, 98, 221–225. https://doi.org/10.1016/j.renene.2016.02.039

    Article  Google Scholar 

  54. Robledo-Narváez, P. N., et al. (2013, October). The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes. Journal of Environmental Management, 128, 126–137. https://doi.org/10.1016/j.jenvman.2013.04.042

    Article  Google Scholar 

  55. Abd Jalil, N. K., Asli, U. A., Hashim, H., Abd Jalil, A., Ahmad, A., & Khamis, A. K. (2018, August). Biohydrogen production from pineapple biomass residue using immobilized co-culture of clostridium sporogenes and Enterobacter aerogenes. Journal of Energy and Safety Technology (JEST), 1(1). https://doi.org/10.11113/jest.v1n1.8

Download references

Acknowledgments

The author acknowledges the funding from Universiti Teknologi Malaysia (UTM) provided under Grant of Vot numbers Q.J130000.2546.17H90 and Q.J130000.2544.09H24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umi Aisah Asli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jalil, N.K.A., Asli, U.A., Hashim, H., Hassim, M.H., Norazahar, N., Sadikin, A. (2024). Bioreactor Design Selection for Biohydrogen Production Using Immobilized Cell Culture System. In: Vahidinasab, V., Mohammadi-Ivatloo, B., Shiun Lim, J. (eds) Green Hydrogen in Power Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-52429-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52429-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52428-8

  • Online ISBN: 978-3-031-52429-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics