Skip to main content

Integrated Control of Strawberry Anthrachnose by Trichoderma Asperellum–Pyraclostrobin/Boscalid Combination

  • Chapter
  • First Online:
Sustainable and Green Technologies for Water and Environmental Management

Abstract

The different Trichoderma asperellum—Pyraclostrobin + Boscalid preventive treatment programs were applied before inoculation with Colletotrichum gloeosporioides, to the aerial parts of Camarosa strawberry plants. They reduced anthracnose symptoms for 80 days, The disease severity reduction percentages on leaves were ranged from 66.66 to 99.1%. The numbers of symptomatic flowers, green and red strawberries are zero to low compared to the inoculated control, the reduction percentages varied between 94.1–100%, 92.25–100% and 81.35–100%. The C. gloeosporioides inoculum on leaves and petioles of treated plants was low to nil compared to plants inoculated with the pathogen, the re-isolation percentages fluctuated from 0 to 25%/100% and 0 to 33%/100%. The combined treatments provided better development of the aerial and root parts than the inoculated plants. The aerial perpendicular diameter growth, root length development and their fresh weights reached respectively 16.66/7.66 cm, 35.33/14 cm, 8.6/3.3 g and 21.83/9.16 g. The Trichoderma asperellum—Pyraclostrobin + Boscalid combination provided integrated protection of strawberry plants against anthracnose and compatibility between biological control agent and fungicide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-kader MH, El-tayeb TA (2012) Field implementation using chlorophyll derivatives with sunlight for malaria, filaria and dengue fever vectors control in infested African swamps. Malar J 11(1):42

    Article  Google Scholar 

  • Abdellatif OC, Amina OT, Wafae K, Rachid B, Allal D (2019) Production, formulation and recycling of a biofungicide and biostimulant product based on Trichoderma asperellum. MA 41534. Publication date 31 May 2019. https://patentregister.ompic.ma/SearchPatentsearchByDepot?typeNum=AP&numDepot=41534&count=0&lang=FR

    Google Scholar 

  • Adandonon A, Aveling TAS, Labuschagne N, Tamo M (2006) Biocontrol agents in combination with Moringaoleifera extract for integrated control of Sclerotium-causedcowpeadamping-off and stem rot. Eur J Plant Pathol 115(4):409–418

    Article  Google Scholar 

  • Aesan TE, Oancea AO, atefan LM, Mãnoiu VS, Ghiurea M, Rãut I, ConstantinescuAruxandei D, Toma A, Bira AF, Pomohaci CM, Oancea F (2020) Effects of foliartreatment with a Trichoderma plant biostimulant consortium on Passiflora caerulea yield and quality. Microorganisms 8(13):2–27. https://doi.org/10.3390/microorganisms8010123

  • Alfiky A, Weisskopf L (2021) DecipheringTrichoderma–plant–pathogen interactions for betterdevelopment of biocontrol applications. J Fungi 7(1):1–18. https://doi.org/10.3390/jof7010061

    Article  CAS  Google Scholar 

  • Anonymous (2018) RAP Leader in integrated pest management. Strawberry technical sheet. Anthracnose in strawberries. (Phytosanitary Warning Network). https://fraisesetframboisesduquebec.com/wp-content/uploads/2015/02/Survol-des-pratiques-et-des-recherches-sur-la-fraise-biologique-ici-et-ailleurs_2018.pdf

  • Anonymous (2023) Interproberries Morocco: Moroccan interprofessional federation of fruit berries. Moroccan berries sector. In: 4th international strawberry congress, Antwerp, Belgium, 21–22 September 2022. https://www.iscbelgium.com. Accessed 10 Feb 2023

  • Buddie AG, Martínez-Culebras P, Bridge PD, García MD, Querol A, Cannon PF, Monte E (1999) Molecular characterization of Colletotrichum isolates derived from strawberry. Mycol Res 103:385–394

    Article  CAS  Google Scholar 

  • Cai L, Giraud T, Zhang N, Begerow D, Cai G, Shivas RG (2011) The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Divers 50:121–133

    Article  Google Scholar 

  • Carisse O, Lefebvre A, Van der Heyden H, Roberge L, Brodeur L (2013) Analysis of incidence-severity relationships for strawberry powdery mildew as influenced by cultivar, cultivar type, and production systems. Plant Dis 97(3):354–362

    Article  CAS  Google Scholar 

  • Carvalho FP (2006) Agriculture, pesticides, food security and food safety. Environ Sci Policy 9(7):685–692

    Article  Google Scholar 

  • Cavero PAS, Hanada RE, Gasparotto L, Neto RAC, de Souza JT (2015) Biological control of banana black Sigatokadisease with Trichoderma. Crop Protect 45(6):951–957. Trichoderma. https://doi.org/10.1590/0103-8478cr20140436951

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans Royal Soc B: Biol Sci 366(1573):1987–1998

    Article  Google Scholar 

  • Chen M, Liu Q, Gao SS, Young AE, Jacobsen SE, Tang Y (2019) Genomemining and biosynthesis of a polyketide from a biofertilizer fungus that can facilitate reductive iron assimilation in plant. Proc National Acad Sci USA 116(12):5499–5504. https://doi.org/10.1073/pnas.1819998116

  • Chliyeh M, Ouazzani Chahdi A, Selmaoui K, Ouazzani Touhami A, Filali Maltouf A, El Modafar C, Moukhli A, Oukabli A, Benkirane R, Douira A (2014) Effect of Trichoderma harzianum and Arbuscular mycorrhizal fungi against Verticillium wilt of tomato. Int J Recent Sci Res 5(2):449–459

    Google Scholar 

  • Daami-Remadi M (2001) Biological control of Fusarium spp. pathogens responsible for dry rot of potato tubers. Dissertation for Advanced Studies in Plant Protection and Environment. Tunisia: Higher School of Horticulture and Livestock of Chott Mariem, 72 p

    Google Scholar 

  • Dowling ME, Hu MJ, Schnabel G (2017) Identification and characterization of Botrytis fragariae isolates on strawberry in the United States. Plant Dis 101(10):1769–1773

    Article  CAS  Google Scholar 

  • El Kaissoumi H, Mouden N, Chliyeh M, Benkirane R, OuazzaniTouhami A, Douira A (2018) Comparative pathogenicity of Colletotrichumspp. against different varieties of strawberry plants (Fragariaananassa) widely grown in Morocco. Acta Phytopathologica and EntomologicaHungarica 53(2):1–20

    Google Scholar 

  • Feliziani and Romanazzi (2016) Postharvest decay of strawberry fruit: etiology, epidemiology, and disease management. J Berry Res 6:47–63. https://doi.org/10.3233/JBR-150113,IOSPress

    Article  Google Scholar 

  • Fenibo E, Ijoma G, Matambo T (2020) Biopesticides in sustainable agriculture: current status and prospects. Preprints, pp 1–43

    Google Scholar 

  • Fiorentino N, Ventorino V, Woo SL, Pepe O, De Rosa A, Gioia L, Romano I, Lombardi N, Napolitano M, Colla G, Rouphael Y (2018) Trichoderma-based biostimulants modulaterhizospheremicrobial populations and improve N uptakeefficiency, yield, and nutritionalquality of leafyvegetables. Front Plant Sci 9(June):1–15. https://doi.org/10.3389/fpls.2018.00743

  • Forcelini BB, Rebello CS, Wang NY, Peres NA (2018) Fitness, competitive ability, and mutation stability of isolates of Colletotrichum acutatum from strawberry resistant to QoI fungicides. Phytopathology 108(4):462–468

    Article  Google Scholar 

  • Freeman S (2008) Management, survival strategies, and host range of Colletotrichum acutatum on strawberry. HortScience 43(1):66–68

    Article  Google Scholar 

  • Gauhl F, Pasberg-Gauhl C, Vuylsteke D, Ortiz R (1995) Multilocational evaluation of black Sigatoka resistance in banana and plantain. IITA Research Guide 47. 2nd edn. Training Program, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, 59 p

    Google Scholar 

  • Hibar K, Daami-Remadi M, Khiareddine H, El Mahjoub M (2005) In vitro and in vivo inhibitory effect of Trichoderma harzianum on Fusarium oxysporum. sp. radicis-lycopersici. Biotechnol, Agron, Soc Environ 9(3):163–171

    Google Scholar 

  • Hou SF, Liu JJ, Xu TF, Li XF, Li S, Wang HQ (2022) Simultaneous detection of three crown rot pathogens in field-grown strawberry plants using a multiplex PCR assay. Crop Prot 156:105957

    Article  CAS  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87(1):4–10

    Article  CAS  Google Scholar 

  • Khalequzzaman KM, Uddin MK, Hossain MM, Hasan MK (2016) Effect of fungicides in controlling wilt disease of cumin. Malays J Med Biol Res 3:69–74

    Google Scholar 

  • Kim MS, Jin JS, Kwak YS, Hwang GS (2016) Metabolic response of strawberry (Fragaria × ananassa) leaves exposed to the angular leaf spot bacterium (Xanthomonas fragariae). J Agric Food Chem 64(9):1889–1898

    Article  CAS  Google Scholar 

  • Kranthi KR, Jadhav D, Wanjari R, Kranthi S, Russell D (2001) Pyrethroid resistance and mechanisms of resistance in field strains of Helicoverpaarmigera (Lepidoptera: Noctuidae). J Econ Entomol 94(1):253–263

    Article  CAS  Google Scholar 

  • Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56(7):1077–1135

    Article  CAS  Google Scholar 

  • Li X, Jing T, Zhou D, Zhang M, Qi D, Zang X, Zhao Y, Li K, Tang W, Chen Y, Qi C, Wang W, Xie J (2021) Biocontrol efficacy and possible mechanism of Streptomyces sp. H4 against postharvest anthracnose caused by Colletotrichum fragariae on strawberry fruit. Postharvest Biol Technol 175:111401

    Google Scholar 

  • Maas JL (1998) Compendium of strawberry diseases. Second edition. The American Phytopathological Society Press, St Paul, Minnesota, USA, 98 pp

    Google Scholar 

  • Meng X, Miao Y, Ma Q, Liu L, Guo K, Wei D, Liu R, Qirong S (2019) TgSWO from Trichodermaguizhouense NJAU4742 promotes growth in cucumber plants by modifying the rootmorphology and the cellwall architecture. MicrobialCellFactories 18(1):1–15. https://doi.org/10.1186/s12934-019-1196-8

  • Meyer G De, Bigirimana J, Elad Y, Höfte M (1998) Induced systemic resistance in Trichodermaharzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104(3):279–286p

    Google Scholar 

  • Ministry of Agriculture, Fisheries and Food of Quebec (MAPAQ) (2019) Diagnostic portrait of the strawberry and raspberry industry in Quebec. MAPAQ, Quebec, QC, Canada. https://www.mapaq.gouv.qc.ca/fr/Publications/Portraitdiagnosectoralfraises_framboises.pdf

  • Mrabet R, Bahri H, Zaghouane O, Chiekh M’hamed H, El-Areed SRM, Abou El-Enin MM (2002) Chapter 6: Adoption and spread of conservation agriculture in North Africa. In: Advances in Conservation Agriculture. Volume 3: Adoption and Spread, Kassam A (ed). Burleigh Dodds, Cambridge, UK. ISBN-13: 9781786764751

    Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front Public Health 4(148)

    Google Scholar 

  • Noel J-P, Lytle M, Cascio C, Wallace MT (2018) Disrupted integration of exteroceptive and interoceptive signaling in autism spectrum disorder. Autism Res 11(1):194–205

    Article  Google Scholar 

  • ONSSA (National Food Safety Office) (2022) Approval of chemical inputs—ONSSA, online service. Trade name: SIGNUM WG. http://eservice.onssa.gov.ma/IndPesticide.aspx. Last updated 16 Nov 2022

  • Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) (2009) OMAFRA, Guelph, ON, Canada. Integrated crop management. http://www.omafra.gov.on.ca/IPM/french/strawberries/diseases-anddisorders/index.html

  • Paulus AO (1990) Fungal diseases of strawberry. J HortScience 25(8):885–889p

    Article  Google Scholar 

  • Peres NA, Timmer LW, Adaskaveg JE, Correll JC (2005) Lifestyles of Colletotrichum Acutatum. Plant Dis 89(8):784–796

    Article  CAS  Google Scholar 

  • Pray CE, Huang J, Hu R, Rozelle S (2002) Five years of Bt cotton in China—the benefits continue. Plant J 31(4):423–430

    Article  CAS  Google Scholar 

  • Roach JA, Verma S, Peres NA, Jamieson AR, van de Weg WE, Bink MCAM, Bassil NV, Lee S, Whitaker VM (2016) FaRXf1: a locus conferring resistance to angular leaf spot caused by Xanthomonas fragariae in octoploid strawberry. Theor Appl Genet 129(6):1191–1201

    Article  CAS  Google Scholar 

  • Sawant IS (2014) Trichoderma-foliarpathogen interactions. Open Mycol J 8(1):58–70. https://doi.org/10.2174/1874437001408010058

    Article  Google Scholar 

  • Sellami S, Tounsi S, Jamoussi K (2015) Biological control, an alternative to chemical phytosanitary products. Sfax Biotechnology Center, Biopesticides Laboratory, Tunisia 19(5):2286–5314p

    Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Ann Rev Entomol 47(1):845–881

    Google Scholar 

  • Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Fabrizio A, Anket S (2020) Trichoderma: the “Secrets” of a multi-talented. Seedlings 9(762). https://doi.org/10.3390/plants9060762

  • Tanji A, Benicha M, Mamdouh M (2014) Strawberry production technique, Results of surveys at Loukkos. Transfer of Technology in Agriculture MADER/DERD_PNTTA (Ed.), Ministry of Agriculture and Rural Development, Monthly Information and Liaison Bulletin of the PNTTA. No. 201: 9 pp

    Google Scholar 

  • Tellier S, Breton A, Van der Heyden H (2021) Technical data sheet—Strawberry, Anthracnose in Strawberry. Phytosanitary Warning Network (RAP), MAPAQ, Quebec, QC, Canada. https://www.agrireseau.net/documents/Document_97707.pdf

  • Vincent C, Panneton B (2001) Physical control methods as alternatives to pesticides. Vertigo—Electron J Environ Sci 2(2)

    Google Scholar 

  • Wang M, Ma J, Fan L, Yu K, Fu C, Gao J, Chen Y, Li J (2015) Biological control of southern corn leafblight by Trichodermaatroviride. Biocontr Sci Tech 25(10):1133–1146. https://doi.org/10.1080/09583157.2015.1036005

    Article  Google Scholar 

  • Windham MTY, Baker RA (1986) mechanism for increased plant growth induced by Trichoderma spp. Phytopathology76:518–521

    Google Scholar 

  • Xu J, Cui W, Cheng JJ, Stomp AM (2011) Production of high-starch duckweed and its conversion to bioethanol. Biosyst Eng 110(2):67–72

    Google Scholar 

  • Xu XF, Lin T, Yuan SK, Dai DJ, Shi HJ, Zhang CQ, Wang HD (2014) Characterization of baseline sensitivity and resistance risk of Colletotrichum gloeosporioides complex isolates from strawberry and grape to two demethylation-inhibitor fungicides, prochloraz and tebuconazole. Australas Plant Pathol 43:605–613

    Article  CAS  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (CucumissativusL.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65(3):1061–1070

    Google Scholar 

  • Yovo OPD (2007) Search for genes modifying the clinical expression of sickle cell disease. Doctoral dissertation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanane El Kaissoumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaissoumi, H.E. et al. (2024). Integrated Control of Strawberry Anthrachnose by Trichoderma Asperellum–Pyraclostrobin/Boscalid Combination. In: Azrour, M., Mabrouki, J., Guezzaz, A. (eds) Sustainable and Green Technologies for Water and Environmental Management. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-031-52419-6_14

Download citation

Publish with us

Policies and ethics