Skip to main content

Tomato Growth Promotion by Trichoderma Asperellum Laboratory-Made Bioproduct

  • Chapter
  • First Online:
Sustainable and Green Technologies for Water and Environmental Management

Abstract

The endophytic fungus Trichoderma asperellum known as biological control agent has also capacity to stimulate plant growth. Tomato plants were treated with the moroccan T. asperellum laboratory-made biofungicidal and biostimulant product slurry at a concentration of 107 conidia.mL−1 by dipping before planting and by fertigation with different volumes, 5 L, 10 L, 15 L and 20 L, three times every 20 days during cultivation. The tomato plants grew well compared to the control plants. The aerial part length, numbers of leaves, flowers and fruits respectively increased with time varying from 48.29 to 55.64/34.28 cm; 10.36 to 12.56/8.6; 6.86 to 9.72/5.2; 0 to 0.26/0 after the first application, from 79. 06 to 91.09/ 51.83 cm; 27.6 to 32.43/22.53; 23.9 to 42.4/9.8; 3.84–5.88/2.74 after the second application and from 95.55 to 112.12/70.53 cm; 39.92 to 45.62/22.48; 17.08 to 58.99/7.94; 14.32 to 23.2/12.14 after the third application. By the end of the trial, the root part length and the fresh weights of the aerial and root parts attained 53/48 cm; 555.96/238.3 g and 31.76/20.06 g respectively. T. asperellum was able to colonize the roots, stems and leaves of the tomato plants, with significant re-isolation percentages reaching 90%, 85% and 66.66%. The T. asperellum based bioproduct has shown its ability to promote the growth of tomato plants, the gain percentages of the different agronomic parameters are very important which can be multiplied by 2, 3 or even 5, as in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida F, Rodrigues ML, Coelho C (2019) The still underestimated problem of fungal diseases worldwide. Front Microbiol 10:214. https://doi.org/10.3389/fmicb.2019.00214

    Article  Google Scholar 

  • Arah IK (2015) An overview of post-harvest challenges facing tomato production in Africa. In: African Studies Association of Australasia and the Pacific (AFSAAP) 37th annual conference Africa: diversity and development. Dunedin, New Zealand, pp 1–21

    Google Scholar 

  • Attia MS, Abdelaziz AM, Al-Askar AA, Arishi AA, Abdelhakim AM, Hashem AH (2022) Plant growth-promoting fungi as biocontrol tool against Fusarium wilt disease of tomato plant. J Fungi 8:775. https://doi.org/10.3390/jof8080775

    Article  CAS  Google Scholar 

  • Baker R, Elad Y, Chet I (1984) The controlled experiment in the scientific method with special emphasis on biological control. Phytopathology 74:1019–1021

    Article  Google Scholar 

  • Brunner K, Zeilinger S, Ciliento R, Woo SL, Lorito M, Kubicek CP, Mach RL (2005) Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Appl Environ Microbiol 71:3959–3965

    Article  CAS  Google Scholar 

  • Capobianco-Uriarte MDIM, Aparicio J, De Pablo-Valenciano J, Casado-Belmonte MDP (2021) The European tomato market. An approach by export competitiveness maps. PLoS ONE 16(5):e0250867. https://doi.org/10.1371/journal.Pone.0250867

  • Caron J, Laverdière L, Thibodeau PO, Bélanger RR (2020) Utilisation d’une souche indigène de Trichoderma harzianum contre cinq agents pathogènes chez le concombre et la tomate de serre au Québec. Phytoprotection 83:73–87

    Article  Google Scholar 

  • Chang YC, Chang YC, Baker R, Kleifeld O, Chet I (1986) Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. Plant Dis 70:145–148

    Article  Google Scholar 

  • Chliyeh M, Ouazzani Chahdi A, Selmaoui K, Ouazzani Touhami A, Filali Maltouf A, El Modafar C, Moukhli A, Oukabli A, Benkirane R, Douira A (2014) Effect of Trichoderma and arbuscular mycorrhizal fungi againt verticillium wilt of tomato. Int J Recent Sci Res 5(2):449–459

    Google Scholar 

  • Contreras-Cornejo HA, Macias-Rodriguez L, Del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interaction with plant. FEMS Microbiol Ecol 92:fiw036. https://doi.org/10.1093/femsec/fiw036

  • Darles B (2013) Evaluation de l’efficacité de diffèrent produits de biocontrôle, pour lutter contre la fusariose du Dipladenia. Rapport de stage, (Bioingénierie) option Biotechnologie végétales, Université Paul Sabatier, Toulouse, pp 35

    Google Scholar 

  • De Souza JT, Bailey BA, Pomella AWV, Erbe EF, Murphy CA, Bae H, Hebbar PK (2008) Colonization of cacao seedlings by Trichoderma stromaticum, a mycoparasite of the witches’ broom pathogen, and its influence on plant growth and resistance. Biol Contr 46:36–45

    Article  Google Scholar 

  • Elame F, Lionboui H, Wifaya A, Mokrini F, Mimouni A, Azim K (2019) Revue Marocaine des Sciences Agronomiques et Vétérinaires 7(4):595–599

    Google Scholar 

  • Elshafie HS, Sakr S, Bufo SA, Camele I (2017) An attempt of biocontrol the tomato-wilt disease caused by Verticillium dahlia using Burkholderia gladioli pv. agaricicola and its bioactive secondary metabolites. Int J Plant Biol 8:7263. https://doi.org/10.4081/pb.2017.7263

  • FAOSTAT (2021, November 3). https://www.fao.org/faostat/en/#data/QCL

  • FAOSTAT (2023) Crops and livestock products, Tomatoes (Morocco). https://www.fao.org/faostat/en/#data/QCL. Consulté le 20/04/2023

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

    Article  CAS  Google Scholar 

  • Harman GE (2011) Trichoderma—not just for biocontrol anymore. Phytoparasitica 39:103–108

    Article  Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strains T22 and maize inbred line mo 17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94(2):147–153

    Article  Google Scholar 

  • Heraux FMG, Hallett SG, Ragothama KG, Weller SC (2005) Composted chicken manure as a medium for the production and delivery of Trichoderma virens for weed control. Hort Sci 40:1394–1397

    Google Scholar 

  • Hewedy OA, Abdel-lateif KS, Bakr RA (2020a) Genetic diversity and biocontrol efficacy and indigenous Trichoderma isolates against Fusarium wilt of pepper. J Basic Microbiol 60:126–135. https://doi.org/10.1002/jobm.201900493

  • Hewedy OA, Abdel KS, lateif MF, Seleiman AS, Albarakaty FM, El-Meihy RM (2020b) Phylogenetic diversity of Trichoderma strains and their antagonistic potential against soil-borne pathogens under stress conditions. Biology 9:189. https://doi.org/10.3390/biology9080189

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  Google Scholar 

  • Jones JB, Zitter TA, Momol TM, Miller SA (2014) Compendium of tomato diseases and pests. APS Press, United States

    Google Scholar 

  • Khoshmanzar E, Aliasgharzad N, Neyshabouri MR et al (2020) Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress. Int J Environ Sci Technol 17:869–878. https://doi.org/10.1007/s13762-019-02405-4

    Article  CAS  Google Scholar 

  • Kleifeld O, Chet I (1992) Trichoderma harzianum—Interaction with plants and effect on growth response. Plant Soil 144:267–272

    Google Scholar 

  • Mohiddin FA, Khan MR, Khan SM, Bhat BH (2010) Why Trichoderma is considered super hero (super fungus) against the evil parasites? Plant Pathol J 9:92–102. https://doi.org/10.3923/ppj.2010.92.102

    Article  Google Scholar 

  • Morán-Diez ME, Tranque E, Bettiol W, Monte E, Hermosa R (2020) Differential response of tomato plants to the application of three Trichoderma species when evaluating the control of pseudomonas syringae populations. Plants 9:626. https://doi.org/10.3390/plants9050626

    Article  CAS  Google Scholar 

  • Mouria B, Ouazzani-Touhami A, Douira A (2007) Effet de diverses souches du Trichoderma sur la croissance d'une culture de tomate en serre et leur aptitude à coloniser les racines et le substrat Phytoprotection 88(3):103–110

    Google Scholar 

  • Mulugeta T, Muhinyuza JB, Gous-Meyer R, Matsaunyane L, Andreasson E, Alexandersson E (2020) Botanicals and plant strengtheners for potato and tomato cultivation in Africa. J Integr Agric 19(2):406–427

    Article  CAS  Google Scholar 

  • Olowe OM, Nicola L, Asemoloye MD, Akanmu AO, Babalola OO (2022) Trichoderma : potential bio-resource for the management of tomato root rot diseases in Africa. Microbiol Res 257:126978. https://doi.org/10.1016/j.micres.2022.126978

    Article  CAS  Google Scholar 

  • Ortiz A, Orduz S (2001) In vitro evaluation of Trichoderma and Gliocladium antagonism against the symbiotic fungus of the leaf-cutting and Attacephalots. Mycopathologia 150:53–60

    Article  CAS  Google Scholar 

  • Ouazzani Chahdi A, Ouazzani Touhami A, Khirallah W, Benkirane R, Douira A (2019) Production, formulation et recyclage d'un produit biofongicide et biostimulant à base de Trichoderma asperellum. MA 41534 Date de publication, June 31. https://patentregister.ompic.ma/SearchPatent/searchByDepot?typeNum=AP&numDepot=41534&count=0&lang=FR

    Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. American Psychopathological Society, St. Paul, MN

    Book  Google Scholar 

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Annual Rev Phytopathol 39:103–133

    Article  CAS  Google Scholar 

  • Poveda J, Abril-Urias P, Escobar C (2020) Biological control of plant-parasitic Nematodes by filamentous fungi inducers of resistance: Trichoderma, Mycorrhizal and Endophytic Fungi. Front Microbiol 11:992. https://doi.org/10.3389/fmicb.2020.00992

    Article  Google Scholar 

  • Ruiz-Cisneros MF, Ornelas-Paz JJ, Olivas-Orozco GI, Acosta-Muñiz CH, Sepúlveda-Ahumada DR, Pérez-Corral DA, Rios-Velasco C, Salas-Marina MA, Fernández-Pavía SP (2018) Effect of Trichoderma spp. and phytopathogenic fungi on plant growth and tomato fruit quality. Revista Mexicana de Fitopatologia 36(3):444–456

    Google Scholar 

  • Rwomushana I, Beale T, Chipabika G, Day R, Gonzalez-Moreno P, Lamontagne Godwin J, Makale F, Pratt C, Tambo J (2019) Evidence note: tomato leafminet (Tuta absoluta): impacts and coping strategies for Africa. CABI Work. Paper 12:1–56

    Google Scholar 

  • Sahebani N, Hadavi N (2008) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol Biochem 40:2016–2020

    Article  CAS  Google Scholar 

  • Sani Md NH, Hasan M, Uddain J, Subramaniam S (2020) Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced N-P-K fertilization. Ann Agric Sci 65(1):107–115

    Google Scholar 

  • Sehim AE, Hewedy OA, Altammar KH, Alhumaidi MS, Abd-Elghaffar RY (2023) Trichoderma asperellum empowers tomato plants and suppresses Fusarium oxysporum through priming responses. Front Microbiol 14:1140378

    Article  Google Scholar 

  • Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Manoharan PT, Rajendran A (2009) Effect of single application of Trichoderma viride and Pseudomonas fluorescens on growth promotion in cotton plants. Afr J Agric Res 4(11):1220–1225

    Google Scholar 

  • Sharma A, Salwan R, Kaur R, Sharma R, Sharma V (2022) Characterization and evaluation of bioformulation from antagonistic and flower inducing Trichoderma asperellum isolate UCRD5. Biocatal Agric Biotechnol 43:102437. https://doi.org/10.1016/j.bcab.2022.102437

    Article  CAS  Google Scholar 

  • Shivam M, Rai D, Rai B, Dubey S (2019) Growth promotion effect of Trichoderma Isolates on tomato seedlings. J Plant Dis Sci 14(2):115–118

    Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Ann Rev Phytopath 48:21–43

    Article  CAS  Google Scholar 

  • Singh V, Upadhyay RS, Sarma BK, Singh HB (2016) Seed bio-priming with Trichoderma asperellum effectively modulate plant growth promotion in pea. Int J Agric, Environ Biotechnol 9(3):361–365

    Article  Google Scholar 

  • Srivastava VK (2004) Trichoderma spp- a boon for better crop health. Pest 28(8):40–45

    Google Scholar 

  • Stewart A, Hill R (2014) Chapter 31—Applications of Trichoderma in plant growth promotion. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (2014) Biotechnology and Biology of Trichoderma. Elsevier, pp 415–428. ISBN 9780444595768. https://doi.org/10.1016/B978-0-444-59576-8.00031-X

  • Szabó M, Csepregi K, Gálber M, Virányi F, Fekete C (2012) Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol Contr 63(2):121–128

    Article  Google Scholar 

  • Tančić-Živanov S, Medić-Pap, S, Danojević D, Prvulović D (2020) Effect of Trichoderma spp. on growth promotion and antioxidative activity of pepper seedlings. Braz Arch Biol Technol 63. https://doi.org/10.1590/1678-4324-2020180659

  • Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12(4):341–354. https://doi.org/10.1111/j.1364-3703.2010.00674.x

  • Uddin MN, Rahman UU, Khan W et al (2018) Effect of Trichoderma harzianum on tomato plant growth and its antagonistic activity against Phythium ultimum and Phytopthora capsici. Egypt J Biol Pest Contr 28:32. https://doi.org/10.1186/s41938-018-0032-5

  • Viesturs U, Leite M, Treimanis A, Eremeeva T, Apsite A, Eisimonte M, Jansons P (1996) Production of cellulases and xylanases by Trichoderma viride and biological processing of lignocellulose and recycled paper fibers. Appl Biochem Biotechnol 57:349–360

    Article  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    Article  CAS  Google Scholar 

  • Wang R, Chen D, Khan RAA, Cui J, Hou J, Liu T (2021) A novel Trichoderma asperellum strain DQ-1 promotes tomato growth and induces resistance to gray mold caused by Botrytis cinerea. FEMS Microbiol Lett 368(20):fnab140

    Google Scholar 

  • Whipps JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agent: status and prospects. In: Butt T, Jackson C, Magan N (eds) Fungal biocontrol agents progress, problems and potential. CAB Publishing, Wallingford, pp 9–22

    Chapter  Google Scholar 

  • Windham MTY, Baker R (1986) A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology 76:518–521

    Article  Google Scholar 

  • Woo SL, Scala F, Ruocco M, Lorito M (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96:181–185

    Google Scholar 

  • Zhang Y, Ma LJ (2017) Deciphering pathogenicity of Fusarium oxysporum from a phylogenomics perspective. Adv Genet 100:179–209. https://doi.org/10.1016/bs.adgen.2017.09.010

    Article  CAS  Google Scholar 

  • Zhang Y, Xiao J, Yang K, Wang Y, Tian Y, Liang Z (2022) Transcriptomic and metabonomic insight into the biocontrol mechanism of Trichoderma asperellum M45a against watermelon Fusarium wilt. PLoS ONE 17:e0272702. https://doi.org/10.1371/journal.pone.0272702

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanane E. L. Kaissoumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaissoumi, H.E.L. et al. (2024). Tomato Growth Promotion by Trichoderma Asperellum Laboratory-Made Bioproduct. In: Azrour, M., Mabrouki, J., Guezzaz, A. (eds) Sustainable and Green Technologies for Water and Environmental Management. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-031-52419-6_13

Download citation

Publish with us

Policies and ethics