Skip to main content

Lambert, the Circle-Squarers and \(\pi \): Introduction to Lambert’s Vorläufige Kenntnisse

  • Chapter
  • First Online:
Irrationality, Transcendence and the Circle-Squaring Problem

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 58))

  • 26 Accesses

Abstract

The treatise «Preliminary Knowledge for Those Seeking the Quadrature and Rectification of the Circle» («Vorläufige Kenntnisse für die, so die Quadratur und Rectification des Circuls suchen») was written in 1766 and published in 1770 as part of the second of the three volumes entitled Contributions to the Use of Mathematics and Its Application (Beyträge zum Gebrauche der Mathematik und deren Anwendung).

Twenty-two years I have been trying to find the fixed point. [...] The same thing happens to me with the quadrature of the circle, which I have been so close to finding, that I do not know, nor can I conceive, how I do not already have it in my pocket.

—Miguel de Cervantes, The Dialogue of the Dogs.

[T]he pursuit of mathematics is a divine madness of the human spirit.

—Alfred North Whitehead, Science and the Modern World.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original version can be consulted at http://www.kuttaka.org/~JHL/L1770a.html.

  2. 2.

    Lambert (1770, p. [II]).

  3. 3.

    Klein (1897, pp. 55, 78).

  4. 4.

    Ferreirós (2015, p. 218).

  5. 5.

    Arndt et al. (2001, p. 7).

  6. 6.

    cf. De Morgan (1872/2015, p. 97). For a detailed account of this issue, cf. Jacob (2005). I am grateful to one of the anonymous reviewers for bringing the latter work to my attention. Cf. also Jacob (2006).

  7. 7.

    cf. Green (1766, pp. 18–20, 33–37, 66–67), Betts (2018, pp. 5–6, 13–14).

  8. 8.

    cf. Dunn et al. (2014).

  9. 9.

    cf. Boistel (2016, pp. 66–67, 446). For a guide on how to use the quadrant, see http://www.meridienne.org/atelier/instruments/quartier-reduction/utilisation/ (accessed on 26 March 2024).

  10. 10.

    cf. De Messanges (1686, pp. 14–15), Chambers (1728, p. 221), Society of Gentlemen (1754, p. 593).

  11. 11.

    cf. De Causans (1754), Hutton (1815, pp. 273–274).

  12. 12.

    cf. Montucla (1802, p. 384), Boistel (2016, pp. 46–48).

  13. 13.

    cf. Heath (1897, p. 93).

  14. 14.

    cf. Knorr (1993, pp. 153–155).

  15. 15.

    cf. Van Ceulen (1615, p. 163). Because of the accuracy of this approximation, \(\pi \) was for a long time known as the «Ludolphian number» (Ludolphsche Zahl), especially in German-speaking territories, and in fact there are still people today who know it by this designation, cf. Arndt et al. (2001, p. 183).

  16. 16.

    The original version can be consulted at http://www.kuttaka.org/~JHL/L1770a_3.pdf (accessed on 26 March 2024).

  17. 17.

    Lambert (1765–1766/1770, p. 82), cf. Bauer (2005).

  18. 18.

    Unger (1829, pp. 326–327).

  19. 19.

    Schepler (1950a, p. 225), De Vausenville (1778).

  20. 20.

    Schepler (1950a, p. 226), cf. Blanc (1997, pp. 12–13).

  21. 21.

    Schepler (1950a, pp. 227–228), De Morgan (1872/2015, pp. 44–51), cf. Smith (1869), cf. Smith (1870).

  22. 22.

    Schepler (1950b, p. 283), Arndt et al. (2001, p. 8).

References

  • Arndt, J., & Haenel, C. (2001). Pi - Unleashed. Germany: Springer.

    Book  Google Scholar 

  • Bauer, F. L. (2005). Lamberts Kettenbruch. Informatik-Spektrum, 28(4), 303–309.

    Article  Google Scholar 

  • Betts, J. (2018). Marine chronometers at Greenwich: A catalogue of marine chronometers at the national maritime museum. Greenwich: Oxford University Press/National Maritime Museum Greenwich.

    Book  Google Scholar 

  • Blanc, D. (1997). Le chiffre du savoir. Le calcul mental et la question de l’écriture. In Appel d’offres: “Ethnologie des écritures ordinaires”. Toulouse: Centre d’anthropologie.

    Google Scholar 

  • Boistel, G. (2016). L’astronomie nautique au XVIIIe siècle en France: tables de la Lune et longitudes en mer. Thèse de doctorat: Université de Nantes.

    Google Scholar 

  • Chambers, E. (1728). Cyclopœdia: or, an universal dictionary of arts and sciences, volume the first. London: James & John Knapton et al.

    Google Scholar 

  • De Causans, J.-L. (1754). Eclaircissement definitif de M. le Chevalier de Causans, sur la quadrature du cercle.

    Google Scholar 

  • De Messanges, C. M. (1686). Le grand et fameux problême de la quadrature du cercle. Paris: Jean Baptiste Coignard.

    Google Scholar 

  • De Morgan, A. (1872/2005). A budget of paradoxes. United Kingdom: Cambridge University Press.

    Google Scholar 

  • De Vausenville, G. R. (1778). Essai physico-géométrique. Paris: Merigot, d’Houry & Esprit.

    Google Scholar 

  • Dunn, R., & Higgitt, R. (2014). Finding longitude: How ships, clocks and stars helped solve the longitude problem. London: Royal Museums Greenwich, Collins.

    Google Scholar 

  • Ferreirós, J. (2015). Mathematical knowledge and the interplay of practices. Princeton University Press.

    Book  Google Scholar 

  • Grabowski, L., Máthé, A., Pikhurko, O. (2016/2020). Measurable equidecompositions for group actions with an expansion property. Accepted for publication in the Journal of the European Mathematical Society. Revised September 25, 2020. Accessed April 17, 2022, from https://arxiv.org/abs/1601.02958.

  • Green, C. (1766). Historical account of the proceedings relative to the discovery of the longitude. London: Miscellanea Scientifica Curiosa.

    Google Scholar 

  • Heath, T. (1897). The works of Archimedes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hutton, C. (1815). A philosophical and mathematical dictionary. New ed. with additions. London.

    Google Scholar 

  • Jacob, M. (2005). Interdire la quadrature du cercle à l’Académie: une décision autoritaire des Lumières? Revue d’histoire des Mathématiques, 11(1), 89–139.

    MathSciNet  Google Scholar 

  • Jacob, M. (2006). La quadrature du cercle: Un problème à la mesure des Lumières. Paris: Fayard.

    Google Scholar 

  • Klein, F. (1897). Famous problems of elementary geometry: The duplication of the cube, the trisection of an angle, the quadrature of the circle. (W. W. Beman & D. E. Smith, Trans.). Boston: Ginn & Company.

    Google Scholar 

  • Knorr, W. R. (1993). The ancient tradition of geometric problems. New York: Dover Publications.

    Google Scholar 

  • Laczkovich, M. (1990). Equidecomposability and discrepancy; a solution of Tarski’s circle-squaring problem. Journal für die Reine und Angewandte Mathematik, 404, 77–117.

    MathSciNet  Google Scholar 

  • Lambert, J. H. (1765–1766/1770). Verwandlung der Brüche. In Beyträge zum Gebrauche der Mathematik und deren Anwendung (pp. 54–132). Zweyter Theil. Berlin: Verlag der Buchhandlung der Realschule.

    Google Scholar 

  • Lambert, J. H. (1770). Vorrede. In Beyträge zum Gebrauche der Mathematik und deren Anwendung (pp. [I]–[XIV]), Zweyter Theil. Berlin: Verlag der Buchhandlung der Realschule.

    Google Scholar 

  • Marks, A. S., & Unger, S. T. (2017). Borel circle squaring. Annals of Mathematics, 186(2), 581–605.

    Article  MathSciNet  Google Scholar 

  • Máthé, A., Noel, J. A., & Pikhurko, O. (2022). Circle squaring with pieces of small boundary and low Borel complexity. Submitted February 3, 2022. Accessed April 17, 2022, from https://arxiv.org/abs/2202.01412.

  • Montucla, J. E. (1802). Histoire des mathématiques. Tome quatrieme, nouvelle édition, considérablement augmentée, Paris: Henri Agasse.

    Google Scholar 

  • Schepler, H. C. (1950). The chronology of PI. Mathematics Magazine, 23(4), 216–28.

    Article  MathSciNet  Google Scholar 

  • Schepler, H. C. (1950). The chronology of PI. Mathematics Magazine, 23(5), 279–83.

    Article  MathSciNet  Google Scholar 

  • Smith, J. (1869). The geometry of the circle and mathematics as applied to geometry by mathematicians, shewn to be a mockery, delusion, and a snare. Liverpool: Edward Howell.

    Google Scholar 

  • Smith, J. (1870). The ratio between diameter and circumference in a circle demonstrated by angles, and Euclid’s theorem, proposition 32, book 1, proved to be fallacious. Liverpool: Edward Howell.

    Google Scholar 

  • Society of Gentlemen (1754). A new and complete dictionary of arts and sciences (vol. I). London: W. Owen.

    Google Scholar 

  • Unger, E. S. (1829). Die Lehre von dem Kreise. Erläutert durch eine bedeutende Sammlung von systematisch geordneten Aufgaben aus allen Theilen der reinen Mathematik. Leipzig: Friedrich Arnold Brockhaus.

    Google Scholar 

  • Van Ceulen, L. (1615). De arithmetische en geometrische fondamenten. Leyden: Ioost van Colster, ende Iacob Marcus.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dorrego López, E., Fuentes Guillén, E. (2024). Lambert, the Circle-Squarers and \(\pi \): Introduction to Lambert’s Vorläufige Kenntnisse. In: Irrationality, Transcendence and the Circle-Squaring Problem. Logic, Epistemology, and the Unity of Science, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-031-52223-9_2

Download citation

Publish with us

Policies and ethics