Skip to main content

Long-Term Sustainable Energy Transition of Ecuador’s Residential Sector Using a National Survey, Geospatial Analysis with Machine Learning, and Agent-Based Modeling

  • Chapter
  • First Online:
Congress on Research, Development, and Innovation in Renewable Energies

Abstract

In 2020, Ecuador’s residential sector consumed 13 million Barrels of Oil Equivalent (BOE), representing 15.7% of the total energy consumption in urban and rural households in the country. Of this consumption, liquefied petroleum gas accounted for 51.8%, electricity 38.4%, firewood 9.7%, and natural gas 0.1%. The main uses in this sector are home heating (49%), home ventilation (29%), and water heating, cooking, lighting, and household appliances (22%). This research aims to study the long-term energy transition of Ecuador’s residential sector. The methodology applies the geoAI MUSE-RASA framework and is based on a national survey, geospatial analysis of large spatiotemporal datasets applying machine learning techniques, and agent-based modeling. The survey results and the spatial distribution of per capita GDP show that the population can be classified into five agents, characterized by investment objectives, search rules, decision strategies, and a budget for investing in household energy technologies. Additional results include national and agent-specific demand, supply, consumption, and emissions. The sustainable scenario shows that by 2050, the total energy demand in the residential sector will reach 103.2 PJ, distributed among home heating (45 PJ), water heating (19 PJ), space ventilation (0.2 PJ), cooking (12 PJ), lighting (5 PJ), and appliances (22 PJ). In the case of home heating, three technologies will play a significant role in the sector’s sustainable transition: electric boilers, biomass boilers, and heat pumps by 2050. The results of this research can be used for evaluating energy policy when considering the spatial distribution of the population and their socioeconomic and developmental characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UNFCCC, Acuerdo de París. https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_spanish_.pdf. Accessed 28 May 2023

  2. Rabi, V.: COP25 El Camino a Seguir para Aumentar las Amiciones Climáticas de los Países del Hemisferio Sur Proyecto N°109140–001 (2020)

    Google Scholar 

  3. Ministerio del Ambiente Ecuador, Primera Contribución Determinada a Nivel Nacional para el Acuerdo de París bajo la Convención Marco de Naciones Unidas sobre Cambio Climático. https://unfccc.int/sites/default/files/NDC/2022-06/Primera%20NDC%20Ecuad or.pdf. Accessed 28 May 2023

  4. Samaniego, J., Alatorre, J.E., Reyes, O., Ferrer, J., Muñoz, L., Arpala, L.: Panorama de las contribuciones determinadas a nivel nacional en América Latina y el Caribe. https://repositorio.cepal.org/handle/11362/44974 (2019). Accessed 28 May 2023

  5. Muñoz Chumo, E.A., Balderramo Vélez, N.R., Pico Mera, G.E.: Eficiencia Energética en Función del Desarrollo del Plan Maestro de Electrificación (PME) en Ecuador. Revista de Investigaciones en Energía, Medio Ambiente y Tecnología: RIEMAT. ISSN: 2588-0721. 3(2), 1 (2018). https://doi.org/10.33936/riemat.v3i2.1624

    Article  Google Scholar 

  6. Ministerio de Energía y Minas Ecuador, Ministerio de Energía y Minas: Balance Energético Nacional (2022)

    Google Scholar 

  7. Ríos, A., Guamán, J., Vargas, C.: Análisis de la Implementación de una Estrategia de Reducción del Consumo Energético en el Sector Residencial del Ecuador: Evaluación del Impacto en la Matriz Energética. Revista Técnica ‘Energía’. 15(1) (2018). https://doi.org/10.37116/revistaenergia.v15.n1.2018.328

  8. Castro Verdezoto, P.L., Vidoza, J.A., Gallo, W.L.R.: Analysis and projection of energy consumption in Ecuador: energy efficiency policies in the transportation sector. Energy Policy. 134, 110948 (2019). https://doi.org/10.1016/j.enpol.2019.110948

    Article  Google Scholar 

  9. Carvajal, P.E., Li, F.G.N.: Challenges for hydropower-based nationally determined contributions: a case study for Ecuador. Clim. Pol. 19(8), 974–987 (2019). https://doi.org/10.1080/14693062.2019.1617667

    Article  Google Scholar 

  10. Chavez-Rodriguez, M.F., et al.: Fuel saving strategies in the Andes: long-term impacts for Peru, Colombia and Ecuador. Energ. Strat. Rev. 20, 35–48 (2018). https://doi.org/10.1016/j.esr.2017.12.011

    Article  Google Scholar 

  11. Espinoza, V.S., Sebastian Espinoza, V., Guayanlema, V., Martínez-Gómez, J.: Energy efficiency plan benefits in Ecuador: long-range energy alternative planning model. Int. J. Energy Econ. Policy. 8(4), 42–54 (2018)

    Google Scholar 

  12. Villamar, D., et al.: Long-term deep decarbonisation pathways for Ecuador: insights from an integrated assessment model. Energ. Strat. Rev. 35, 100637 (2021). https://doi.org/10.1016/j.esr.2021.100637

    Article  Google Scholar 

  13. Moglia, M., Podkalicka, A., McGregor, J.: An agent-based model of residential energy efficiency adoption. J. Artif. Soc. Soc. Simul. 21(3) (2018). https://doi.org/10.18564/jasss.3729

  14. Ding, Z., Hu, T., Li, M., Xu, X., Zou, P.X.W.: Agent-based model for simulating building energy management in student residences. Energ. Buildings. 198, 11–27 (2019). https://doi.org/10.1016/j.enbuild.2019.05.053

    Article  Google Scholar 

  15. de Wildt, T.E., Chappin, E.J.L., van de Kaa, G., Herder, P.M., van de Poel, I.R.: Conflicted by decarbonisation: five types of conflict at the nexus of capabilities and decentralised energy systems identified with an agent-based model. Energy Res. Soc. Sci. 64, 101451 (2020). https://doi.org/10.1016/j.erss.2020.101451

    Article  Google Scholar 

  16. Tian, S., Chang, S.: An agent-based model of household energy consumption. J. Clean. Prod. 242, 118378 (2020). https://doi.org/10.1016/j.jclepro.2019.118378

    Article  Google Scholar 

  17. Lü, G., Batty, M., Strobl, J., Lin, H., Zhu, A.-X., Chen, M.: Reflections and speculations on the progress in geographic information systems (GIS): a geographic perspective. Int. J. Geogr. Inf. Sci. 33(2), 346–367 (2019). https://doi.org/10.1080/13658816.2018.1533136

    Article  Google Scholar 

  18. Rising, J.: Decision-making and integrated assessment models of the water-energy-food nexus. Water Secur. 9, 100056 (2020). https://doi.org/10.1016/j.wasec.2019.100056

    Article  Google Scholar 

  19. Huppmann, D., et al.: The MESSAGE integrated assessment model and the ix modeling platform (ixmp): an open framework for integrated and cross-cutting analysis of energy, climate, the environment, and sustainable development. Environ. Model Softw. 112, 143–156 (2019). https://doi.org/10.1016/j.envsoft.2018.11.012

    Article  Google Scholar 

  20. Wiesmann, D., Lima Azevedo, I., Ferrão, P., Fernández, J.E.: Residential electricity consumption in Portugal: findings from top-down and bottom-up models. Energy Policy. 39(5), 2772–2779 (2011). https://doi.org/10.1016/j.enpol.2011.02.047

    Article  Google Scholar 

  21. Oliveira Panão, M.J.N., Brito, M.C.: Modelling aggregate hourly electricity consumption based on bottom-up building stock. Energ. Buildings. 170, 170–182 (2018). https://doi.org/10.1016/j.enbuild.2018.04.010

    Article  Google Scholar 

  22. Chevez, P.: Construcción de Escenarios Urbano-Energéticos a partir de la Implementación de Estrategias de Eficiencia Energética y Energías Renovables en el Sector Residencial, Universidad Nacional de Salta, Salta. https://ri.conicet.gov.ar/handle/11336/84424 (2017). Accessed 28 May 2023

  23. Moya, D., Copara, D., Olivo, A., Castro, C., Giarola, S., Hawkes, A.: MUSE-RASA captures human dimension in climate-energy-economic models via global geoAI-ML agent datasets. Sci. Data. 10, 693 (2023). https://doi.org/10.1038/s41597-023-02529-w

  24. Moya, D., Budinis, S., Giarola, S., Hawkes, A.: Agent-based scenarios comparison for assessing fuel-switching investment in long-term energy transitions of the India’s industry sector. Appl. Energy. 274, 115295 (2020). https://doi.org/10.1016/j.apenergy.2020.115295

    Article  Google Scholar 

  25. Sachs, J., Moya, D., Giarola, S., Hawkes, A.: Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector. Appl. Energy. 250, 48–62 (2019). https://doi.org/10.1016/j.apenergy.2019.05.011

    Article  Google Scholar 

  26. Moya, D., Copara, D., Amores, J., Muñoz Espinoza, M., Pérez-Navarro, Á.: Caracterización de agentes de consumo energético en el sector residencial del Ecuador basada en una encuesta nacional y en los sistemas de información geográfica para modelamiento de sistemas energéticos. Enfoque UTE. 13(2), 68–97 (2022). https://doi.org/10.29019/enfoqueute.801

    Article  Google Scholar 

  27. Moya, D., et al.: Geospatial and temporal estimation of climatic, end-use demands, and socioeconomic drivers of energy consumption in the residential sector in Ecuador. Energy Convers. Manag. 261, 115629 (2022). https://doi.org/10.1016/j.enconman.2022.115629

    Article  Google Scholar 

  28. Bauer, N., et al.: Shared socio-economic pathways of the energy sector – quantifying the narratives. Glob. Environ. Chang. 42, 316–330 (2017). https://doi.org/10.1016/j.gloenvcha.2016.07.006

    Article  Google Scholar 

Download references

Acknowledgments

Diego Moya, Christian Castro, César Arroba, and Cristian Pérez have been funded by UTA, DIDE research project, Award No. UTA-CONIN-2020-0296-R. Diego Moya has been also funded by the Ecuadorian Secretariat for Higher Education, Science, Technology and Innovation (SENESCYT), Award No. CZ03-35-2017, and supported by The Science and Solutions for a Changing Planet Doctoral Training Partnership, Grantham Institute, at Imperial College London. The Institute for Applied Sustainability Research (IIASUR) supports international research on global sustainability applied to the Global South. We acknowledge the important comments and suggestions made by the anonymous reviewers to improve the quality, clarity, and strictness of this chapter. This research was developed during the PhD studies of Dr. Moya at Imperial College London and in collaboration with the coauthors of this study. The edition and submission of this research paper have been developed during Dr. Moya’s position at Saudi Aramco’s TSPD-TOS team. Dr. Moya acknowledges the support and endorsement of Dr. Ali Al-Dawood to submit this chapter. The views expressed in this paper do not necessarily reflect Saudi Aramco’s official policies and do not reveal confidential data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Moya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moya, D. et al. (2024). Long-Term Sustainable Energy Transition of Ecuador’s Residential Sector Using a National Survey, Geospatial Analysis with Machine Learning, and Agent-Based Modeling. In: Espinoza-Andaluz, M., Melo Vargas, E., Santana Villamar, J., Encalada Dávila, Á., Ordóñez-Saca, B. (eds) Congress on Research, Development, and Innovation in Renewable Energies. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-52171-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52171-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52170-6

  • Online ISBN: 978-3-031-52171-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics