Skip to main content

Interactıon of Micro-Nanoplastics and Heavy Metals in Soil Systems: Mechanism and Implication

  • Chapter
  • First Online:
Management of Micro and Nano-plastics in Soil and Biosolids

Abstract

Various organic and inorganic contaminants have been detected in soil systems among which heavy metals are one of the most studied ones. Additionally, micro-nanoplastics have been introduced as recent contaminant into soil systems by composting, mulching, biosolid applications, waste disposal, surface run-off, and air deposition. While the fate and toxicity of heavy metals in soil systems have been studied thoroughly, further research in the presence of micro-nanoplastics revealed requirement to investigate interaction of micro-nanoplastics and heavy metals in soil systems. Mechanisms such as adsorption, complexation, and biotransformation have been explored to understand the interaction between micro-nanoplastics and heavy metals. Literature about mechanisms and interactions indicates that micro-nanoplastics can play a role as a vector for the fate of heavy metals in soil systems depending on various parameters related with environmental conditions and contaminants. Therefore, heavy metals may behave differently when they co-exist with micro-nanoplastics. In relation to this change in the fate of heavy metals in soil systems, their toxic effects on soil organisms could be altered. In this chapter, physical, chemical, and biological mechanisms that affect the interaction of micro-nanoplastics and heavy metals are presented. Also, environmental implications are discussed within the context of mobility and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi, S., Moore, F., Keshavarzi, B., et al. (2020). PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone. Science of the Total Environment, 744, 140984.

    Article  CAS  Google Scholar 

  • Abdolahpur Monikh, F., Vijver, M. G., Guo, Z., Zhang, P., Darbha, G. K., & Peijnenburg, W. J. G. M. (2020). Metal sorption onto nanoscale plastic debris and trojan horse effects in Daphnia magna: Role of dissolved organic matter. Water Research, 186, 116410.

    Article  CAS  Google Scholar 

  • Abeynayaka, A., Werellagama, I., Ngoc-Bao, P., et al. (2022). Microplastics in wastewater treatment plants. In Current developments in biotechnology and bioengineering: Advances in biological wastewater treatment systems (pp. 311–337). Elsevier.

    Chapter  Google Scholar 

  • Alimi, O. S., Farner, J. M., & Tufenkji, N. (2021). Exposure of nanoplastics to freeze-thaw leads to aggregation and reduced transport in model groundwater environments. Water Research, 189, 116533.

    Article  CAS  Google Scholar 

  • Allen, S., Allen, D., Phoenix, V. R., et al. (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12, 339–344.

    Article  CAS  Google Scholar 

  • ARCADIS and EUNOMIA. (2010). Final report on assessment of the options to improve the management of Bio-waste in the European Union. Assessment.

    Google Scholar 

  • Ateia, M., Zheng, T., Calace, S., Tharayil, N., Pilla, S., & Karanfil, T. (2020). Sorption behavior of real microplastics (MPs): Insights for organic micropollutants adsorption on a large set of well-characterized MPs. Science of the Total Environment, 720, 137634.

    Article  CAS  Google Scholar 

  • Atugoda, T., Piyumali, H., Wijesekara, H., et al. (2023). Nanoplastic occurrence, transformation and toxicity: A review. Environmental Chemistry Letters, 21, 363–381.

    Article  CAS  Google Scholar 

  • Azeem, I., Adeel, M., Ahmad, M. A., et al. (2021). Uptake and accumulation of nano/microplastics in plants: A critical review. Nanomaterials, 11, 2935.

    Article  CAS  Google Scholar 

  • Baken, S., Degryse, F., Verheyen, L., Merckx, R., & Smolders, E. (2011). Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environmental Science & Technology, 45, 2584–2590.

    Article  CAS  Google Scholar 

  • Bandow, N., Will, V., Wachtendorf, V., & Simon, F. G. (2017). Contaminant release from aged microplastic. Environment and Chemistry, 14, 394–405.

    Article  CAS  Google Scholar 

  • Bhagat, J., Nishimura, N., & Shimada, Y. (2021). Toxicological interactions of microplastics/nanoplastics and environmental contaminants: Current knowledge and future perspectives. Journal of Hazardous Materials, 405, 123913.

    Article  CAS  Google Scholar 

  • Bhagat, K., Barrios, A. C., Rajwade, K., Kumar, A., Oswald, J., Apul, O., & Perreault, F. (2022). Aging of microplastics increases their adsorption affinity towards organic contaminants. Chemosphere, 298, 134238.

    Article  CAS  Google Scholar 

  • Bläsing, M., & Amelung, W. (2018). Plastics in soil: Analytical methods and possible sources. Science of the Total Environment, 612, 422–435.

    Article  Google Scholar 

  • Bradney, L., Wijesekara, H., Palansooriya, K. N., Obadamudalige, N., Bolan, N. S., Ok, Y. S., Rinklebe, J., Kim, K. H., & Kirkham, M. B. (2019). Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environment International, 131, 104937.

    Article  CAS  Google Scholar 

  • Brahney, J., Hallerud, M., Heim, E., et al. (2020). Plastic rain in protected areas of the United States. Science, 368, 1257–1260.

    Article  CAS  Google Scholar 

  • Brennecke, D., Duarte, B., Paiva, F., et al. (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178, 189–195.

    Article  CAS  Google Scholar 

  • Bretas Alvim, C., Bes-Piá, M. A., & Mendoza-Roca, J. A. (2020). Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants. Chemical Engineering Journal, 402, 126293.

    Article  CAS  Google Scholar 

  • Büks, F., & Kaupenjohann, M. (2020). Global concentrations of microplastics in soils – A review. The Soil, 6, 649–662.

    Article  Google Scholar 

  • Cai, L., Wang, J., Peng, J., et al. (2017). Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence. Environmental Science and Pollution Research, 24, 24928–24935.

    Article  Google Scholar 

  • Campos, T., Chaer, G., dos Santos, L. P., et al. (2019). Leaching of heavy metals in soils conditioned with biosolids from sewage sludge. Floresta e Ambiente, 26, e20180399.

    Article  Google Scholar 

  • Cao, D., Wang, X., Luo, X., et al. (2017). Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. In IOP conference series: Earth and environmental science. Institute of Physics Publishing.

    Google Scholar 

  • Cao, Y., Zhao, M., Ma, X., Song, Y., Zuo, S., Li, H., & Deng, W. (2021). A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. Science of the Total Environment, 788, 147620.

    Article  CAS  Google Scholar 

  • Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182.

    Article  CAS  Google Scholar 

  • Chappaz, A., & Curtis, P. J. (2013). Integrating empirically dissolved organic matter quality for WHAM VI using the DOM optical properties: A case study of cu-Al-DOM interactions. Environmental Science & Technology, 47, 2001–2007.

    Article  CAS  Google Scholar 

  • Chen, Y., Leng, Y., Liu, X., & Wang, J. (2020a). Microplastic pollution in vegetable farmlands of suburb Wuhan, Central China. Environmental Pollution, 257, 113449.

    Google Scholar 

  • Chen, Y., Liu, X., Leng, Y., & Wang, J. (2020b). Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils. Ecotoxicology and Environmental Safety, 187, 109788.

    Article  CAS  Google Scholar 

  • Chen, X., Gu, X., Bao, L., et al. (2021). Comparison of adsorption and desorption of triclosan between microplastics and soil particles. Chemosphere, 263, 127947.

    Article  CAS  Google Scholar 

  • Cheng, X., Danek, T., Drozdova, J., et al. (2018). Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China. Environmental Monitoring and Assessment, 190, 1–16.

    Article  CAS  Google Scholar 

  • Cheng, Y., Zhu, L., Song, W., et al. (2020). Combined effects of mulch film-derived microplastics and atrazine on oxidative stress and gene expression in earthworm (Eisenia fetida). Science of the Total Environment, 746, 141280.

    Article  CAS  Google Scholar 

  • Cole, M., Lindeque, P., Fileman, E., et al. (2013). Microplastic ingestion by zooplankton. Environmental Science & Technology, 47, 6646–6655.

    Article  CAS  Google Scholar 

  • Corradini, F., Meza, P., Eguiluz, R., et al. (2019). Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci. Total Environ., 671, 411–420.

    Article  CAS  Google Scholar 

  • De Souza MacHado, A. A., Lau, C. W., Till, J., Kloas, W., Lehmann, A., Becker, R., & Rillig, M. C. (2018). Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 52, 9656–9665.

    Article  Google Scholar 

  • De Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., Becker, R., Görlich, A. S., & Rillig, M. C. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53, 6044–6052.

    Article  Google Scholar 

  • Ding, L., Zhang, S., Wang, X., et al. (2020). The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in North-Western China. Sci. Total Environ., 720, 137525.

    Article  CAS  Google Scholar 

  • Dong, Y., Gao, M., Qiu, W., & Song, Z. (2021). Uptake of microplastics by carrots in presence of as (III): Combined toxic effects. Journal of Hazardous Materials, 411, 125055.

    Article  CAS  Google Scholar 

  • Dris, R., Gasperi, J., Saad, M., et al. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine Pollution Bulletin, 104, 290–293.

    Article  CAS  Google Scholar 

  • Dris, R., Gasperi, J., Mirande, C., et al. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453–458.

    Article  CAS  Google Scholar 

  • Duval, J. F. L., Wilkinson, K. I., Van Leeuwen, H. P., & Buffle, J. (2005). Humic substances are soft and permeable: Evidence from their electrophoretic mobilities. Environmental Science & Technology, 39, 6435–6445.

    Article  CAS  Google Scholar 

  • Edo, C., González-Pleiter, M., Leganés, F., et al. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environmental Pollution, 259, 113837.

    Article  CAS  Google Scholar 

  • El Hayany, B., El Fels, L., Quénéa, K., et al. (2020). Microplastics from lagooning sludge to composts as revealed by fluorescent staining- image analysis, Raman spectroscopy and pyrolysis-GC/MS. Journal of Environmental Management, 275, 111249.

    Article  Google Scholar 

  • Enyoh, C. E., Verla, A. W., Verla, E. N., et al. (2019). Airborne microplastics: A review study on method for analysis, occurrence, movement and risks. Environmental Monitoring and Assessment, 191, 1–17.

    Article  Google Scholar 

  • Feng, X., Wang, Q., Sun, Y., et al. (2022). Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil. Journal of Hazardous Materials, 424, 127364.

    Article  CAS  Google Scholar 

  • Fuentes, A., Lloréns, M., Sáez, J., et al. (2008). Comparative study of six different sludges by sequential speciation of heavy metals. Bioresource Technology, 99, 517–525.

    Article  CAS  Google Scholar 

  • Gao, M., Liu, Y., & Song, Z. (2019). Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere, 237, 124482.

    Article  CAS  Google Scholar 

  • Geyer, R. (2020). Production, use, and fate of synthetic polymers. Elsevier.

    Book  Google Scholar 

  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3, 25–29.

    Article  Google Scholar 

  • Gies, E. A., LeNoble, J. L., Noël, M., et al. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553–561.

    Article  CAS  Google Scholar 

  • Godoy, V., Blázquez, G., Calero, M., Quesada, L., & Martín-Lara, M. A. (2019). The potential of microplastics as carriers of metals. Environmental Pollution, 255, 113363.

    Google Scholar 

  • Gudeta, K., Kumar, V., Bhagat, A., et al. (2023). Ecological adaptation of earthworms for coping with plant polyphenols, heavy metals, and microplastics in the soil: A review. Heliyon, 9, e14572.

    Article  CAS  Google Scholar 

  • Guo, G., Zhang, D., & Wang, Y. (2019). Probabilistic human health risk assessment of heavy metal intake via vegetable consumption around Pb/Zn smelters in Southwest China. International Journal of Environmental Research and Public Health, 16, 3267.

    Article  CAS  Google Scholar 

  • Guo, X., Hu, G., Fan, X., & Jia, H. (2020). Sorption properties of cadmium on microplastics: The common practice experiment and a two-dimensional correlation spectroscopic study. Ecotoxicology and Environmental Safety, 190, 110118.

    Article  CAS  Google Scholar 

  • Hao, X., Sun, H. G., Zhang, Y., et al. (2023). Co-transport of arsenic and micro/nano-plastics in saturated soil. Environmental Research, 228, 115871.

    Article  CAS  Google Scholar 

  • He, D., Luo, Y., Lu, S., et al. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC – Trends in Analytical Chemistry, 109, 163–172.

    Article  CAS  Google Scholar 

  • He, D., Zhang, Y., & Gao, W. (2021). Micro(nano)plastic contaminations from soils to plants: Human food risks. Current Opinion in Food Science, 41, 116–121.

    Article  CAS  Google Scholar 

  • Hodson, M. E., Duffus-Hodson, C. A., Clark, A., et al. (2017). Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science & Technology, 51, 4714–4721.

    Article  CAS  Google Scholar 

  • Holmes, L. A., Turner, A., & Thompson, R. C. (2012). Adsorption of trace metals to plastic resin pellets in the marine environment. Environmental Pollution, 160, 42–48.

    Article  CAS  Google Scholar 

  • Holmes, L. A., Turner, A., & Thompson, R. C. (2014). Interactions between trace metals and plastic production pellets under estuarine conditions. Marine Chemistry, 167, 25–32.

    Article  CAS  Google Scholar 

  • Holzinger, A., Mair, M. M., Lücker, D., et al. (2022). Comparison of fitness effects in the earthworm Eisenia fetida after exposure to single or multiple anthropogenic pollutants. Science of the Total Environment, 838, 156387.

    Article  CAS  Google Scholar 

  • Hongprasith, N., Kittimethawong, C., Lertluksanaporn, R., et al. (2020). IR microspectroscopic identification of microplastics in municipal wastewater treatment plants. Environmental Science and Pollution Research, 27, 18557–18564.

    Article  CAS  Google Scholar 

  • Horton, A. A., Walton, A., Spurgeon, D. J., et al. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127–141.

    Article  CAS  Google Scholar 

  • Hua, Z., Ma, S., Ouyang, Z., et al. (2023). The review of nanoplastics in plants: Detection, analysis, uptake, migration and risk. TrAC – Trends in Analytical Chemistry, 158, 116889.

    Article  CAS  Google Scholar 

  • Huang, Y., Liu, Q., Jia, W., et al. (2020). Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 260, 114096.

    Article  CAS  Google Scholar 

  • Huang, B., Sun, L., Liu, M., et al. (2021a). Abundance and distribution characteristics of microplastic in plateau cultivated land of Yunnan Province, China. Environmental Science Pollution Research, 28, 1675–1688.

    Article  CAS  Google Scholar 

  • Huang, C., Ge, Y., Yue, S., et al. (2021b). Microplastics aggravate the joint toxicity to earthworm Eisenia fetida with cadmium by altering its availability. Science of the Total Environment, 753, 142042.

    Article  CAS  Google Scholar 

  • Huang, H., Mohamed, B. A., & Li, L. Y. (2023). Accumulation and fate of microplastics in soils after application of biosolids on land: A review. Environmental Chemistry Letters, 21, 1745–1759.

    Article  CAS  Google Scholar 

  • Huerta Lwanga, E., Gertsen, H., Gooren, H., et al. (2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220, 523–531.

    Article  CAS  Google Scholar 

  • Hüffer, T., & Hofmann, T. (2016). Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environmental Pollution, 214, 194–201.

    Article  Google Scholar 

  • Hüffer, T., Metzelder, F., Sigmund, G., et al. (2019). Polyethylene microplastics influence the transport of organic contaminants in soil. Science of the Total Environment, 657, 242–247.

    Article  Google Scholar 

  • Jan Kole P, Löhr AJ, Van Belleghem FGAJ, Ragas AMJ (2017) Wear and tear of tyres: A stealthy source of microplastics in the environment. International Journal of Environmental Research and Public Health 14, 1265.

    Google Scholar 

  • Jaramillo, M. F., & Restrepo, I. (2017). Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability, 9, 1734.

    Article  Google Scholar 

  • Jia, H., Wu, D., Yu, Y., et al. (2022). Impact of microplastics on bioaccumulation of heavy metals in rape (Brassica napus L.). Chemosphere, 288, 132576.

    Article  CAS  Google Scholar 

  • Jiang, X., Chen, H., Liao, Y., et al. (2019). Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution, 250, 831–838.

    Article  CAS  Google Scholar 

  • Jiang, J., Wang, X., Ren, H., et al. (2020a). Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China. Science of the Total Environment, 746, 141378.

    Article  CAS  Google Scholar 

  • Jiang, X., Chang, Y., Zhang, T., et al. (2020b). Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida). Environmental Pollution, 259, 113896.

    Article  CAS  Google Scholar 

  • Jin, T., Tang, J., Lyu, H., et al. (2022). Activities of microplastics (MPs) in agricultural soil: A review of MPs pollution from the perspective of agricultural ecosystems. Journal of Agricultural and Food Chemistry, 70, 4182–4201.

    Article  CAS  Google Scholar 

  • Ju, H., Zhu, D., & Qiao, M. (2019). Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida. Environmental Pollution, 247, 890–897.

    Article  CAS  Google Scholar 

  • Karlsson, T., Persson, P., & Skyllberg, U. (2006). Complexation of copper(II) in organic soils and in dissolved organic matter - EXAFS evidence for chelate ring structures. Environmental Science & Technology, 40, 2623–2628.

    Article  CAS  Google Scholar 

  • Katsumi, N., Kusube, T., Nagao, S., & Okochi, H. (2021). Accumulation of microcapsules derived from coated fertilizer in paddy fields. Chemosphere, 267. https://doi.org/10.1016/j.chemosphere.2020.129185

  • Kazour, M., Terki, S., Rabhi, K., et al. (2019). Sources of microplastics pollution in the marine environment: Importance of wastewater treatment plant and coastal landfill. Marine Pollution Bulletin, 146, 608–618.

    Article  CAS  Google Scholar 

  • Keller, A. S., Jimenez-Martinez, J., & Mitrano, D. M. (2020). Transport of Nano- and microplastic through unsaturated porous media from sewage sludge application. Environmental Science & Technology, 54, 911–920.

    Article  CAS  Google Scholar 

  • Kernchen, S., Löder, M. G. J., Fischer, F., et al. (2022). Airborne microplastic concentrations and deposition across the Weser River catchment. Science of the Total Environment, 818, 151812.

    Article  CAS  Google Scholar 

  • Khalid, N., Aqeel, M., Noman, A., et al. (2021). Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environmental Pollution, 290, 118104.

    Article  CAS  Google Scholar 

  • Kim, S. W., & An, Y. J. (2019). Soil microplastics inhibit the movement of springtail species. Environment International, 126, 699–706.

    Article  Google Scholar 

  • Kim, L. H., Kang, J., Kayhanian, M., et al. (2006). Characteristics of litter waste in highway storm runoff. Water Science and Technology, 53, 225–234.

    Article  CAS  Google Scholar 

  • Kim, H. M., Lee, D. K., Long, N. P., et al. (2019). Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans. Environmental Pollution, 246, 578–586.

    Article  CAS  Google Scholar 

  • Kinigopoulou, V., Pashalidis, I., Kalderis, D., & Anastopoulos, I. (2022). Microplastics as carriers of inorganic and organic contaminants in the environment: A review of recent progress. Journal of Molecular Liquids, 350, 118580.

    Article  CAS  Google Scholar 

  • Kong, X., Liu, T., Yu, Z., et al. (2018). Heavy metal bioaccumulation in rice from a high geological background area in Guizhou Province, China. International Journal of Environmental Research and Public Health, 15, 2281.

    Article  CAS  Google Scholar 

  • Kopańska, D., & Dudziak, M. (2015). Occurrence of heavy metals in selected made grounds. Ecological Chemistry and Engineering. A, 22(2), 137–149.

    Google Scholar 

  • Koyuncu, S. (2022). Occurrence of organic micropollutants and heavy metals in the soil after the application of stabilized sewage sludge. Journal of Environmental Health Science and Engineering, 20, 385–394.

    Article  CAS  Google Scholar 

  • Kumar, M. V., & Sheela, A. M. (2020). Effect of plastic film mulching on the distribution of plastic residues in agricultural fields. Chemosphere, 273, 128590–128590.

    Article  Google Scholar 

  • Kumar, V., Singh, J., & Kumar, P. (2019). Heavy metals accumulation in crop plants: Sources, response mechanisms, stress tolerance and their effects. In Contaminants in agriculture and environment: Health risks and remediation (pp. 38–57). Agro Environ Media – Agriculture and Ennvironmental Science Academy.

    Chapter  Google Scholar 

  • Lahive, E., Cross, R., Saarloos, A. I., et al. (2022). Earthworms ingest microplastic fibres and nanoplastics with effects on egestion rate and long-term retention. Science of the Total Environment, 807, 151022.

    Article  CAS  Google Scholar 

  • Lares, M., Ncibi, M. C., Sillanpää, M., & Sillanpää, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236–246.

    Article  CAS  Google Scholar 

  • Leslie, H. A., Brandsma, S. H., van Velzen, M. J. M., & Vethaak, A. D. (2017). Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environment International, 101, 133–142.

    Article  CAS  Google Scholar 

  • Li, X., Chen, L., Mei, Q., et al. (2018). Microplastics in sewage sludge from the wastewater treatment plants in China. Water Research, 142, 75–85.

    Article  CAS  Google Scholar 

  • Li, L., Zhou, Q., Yin, N., et al. (2019a). Uptake and accumulation of microplastics in an edible plant. Kexue Tongbao/Chinese Science Bulletin, 64, 928–934.

    Google Scholar 

  • Li, Q., Wu, J., Zhao, X., et al. (2019b). Separation and identification of microplastics from soil and sewage sludge. Environmental Pollution, 254, 113076.

    Article  CAS  Google Scholar 

  • Li, R., Liu, Y., Sheng, Y., Xiang, Q., Zhou, Y., & Cizdziel, J. V. (2020a). Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil. Environmental Pollution, 260, 113988.

    Article  CAS  Google Scholar 

  • Li, W., Wufuer, R., Duo, J., et al. (2020b). Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region. Science of the Total Environment, 749, 141420.

    Article  CAS  Google Scholar 

  • Li, Z., Li, Q., Li, R., et al. (2020c). Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Environmental Science and Pollution Research, 27, 30306–30314.

    Article  CAS  Google Scholar 

  • Li, M., Liu, Y., Xu, G., et al. (2021a). Impacts of polyethylene microplastics on bioavailability and toxicity of metals in soil. Science of the Total Environment, 760, 144037.

    Article  CAS  Google Scholar 

  • Li, Y., Chen, M., Gong, J., et al. (2021b). Effects of virgin microplastics on the transport of cd (II) in Xiangjiang River sediment. Chemosphere, 283, 131197.

    Article  CAS  Google Scholar 

  • Li, M., Jia, H., Gao, Q., et al. (2023). Influence of aged and pristine polyethylene microplastics on bioavailability of three heavy metals in soil: Toxic effects to earthworms (Eisenia fetida). Chemosphere, 311, 136833.

    Article  CAS  Google Scholar 

  • Lian, J., Wu, J., Xiong, H., et al. (2020). Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of Hazardous Materials, 385, 121620.

    Article  CAS  Google Scholar 

  • Liang, X., Zhou, D., Wang, J., et al. (2022). Evaluation of the toxicity effects of microplastics and cadmium on earthworms. Science of the Total Environment, 836.

    Google Scholar 

  • Liao, Y. L., & Yang, J. Y. (2020). Microplastic serves as a potential vector for Cr in an in-vitro human digestive model. Science of the Total Environment, 703, 134805.

    Article  CAS  Google Scholar 

  • Lin, L., Tang, S., Wang, X., Sun, X., & Yu, A. (2021). Hexabromocyclododecane alters malachite green and lead(II) adsorption behaviors onto polystyrene microplastics: Interaction mechanism and competitive effect. Chemosphere, 265, 129079.

    Article  CAS  Google Scholar 

  • Liu, Y. R., He, Z. Y., Yang, Z. M., et al. (2016). Variability of heavy metal content in soils of typical Tibetan grasslands. RSC Advances, 6, 105398–105405.

    Article  CAS  Google Scholar 

  • Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., Ritsema, C. J., & Geissen, V. (2017). Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185, 907–917.

    Article  CAS  Google Scholar 

  • Liu, M., Lu, S., Song, Y., et al. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242, 855–862.

    Article  CAS  Google Scholar 

  • Liu, G., Dave, P. H., Kwong, R. W. M., Wu, M., & Zhong, H. (2021a). Influence of microplastics on the mobility, bioavailability, and toxicity of heavy metals: A review. Bulletin of Environmental Contamination and Toxicology, 107, 710–721. https://doi.org/10.1007/s00128-021-03339-9

  • Liu, S., Shi, J., Wang, J., Dai, Y., Li, H., Li, J., Liu, X., Chen, X., Wang, Z., & Zhang, P. (2021b). Interactions between microplastics and heavy metals in aquatic environments: A review. Frontiers in Microbiology, 12, 1–14.

    Google Scholar 

  • Liu, Y., Shao, H., Liu, J., et al. (2021c). Transport and transformation of microplastics and nanoplastics in the soil environment: A critical review. Soil Use and Management, 2014, 1–19.

    Google Scholar 

  • Liu, Y., Guo, R., Zhang, S., et al. (2022). Uptake and translocation of nano/microplastics by rice seedlings: Evidence from a hydroponic experiment. Journal of Hazardous Materials, 421, 126700.

    Article  CAS  Google Scholar 

  • Lwanga, E. H., Beriot, N., Corradini, F., et al. (2022). Review of microplastic sources, transport pathways and correlations with other soil stressors: A journey from agricultural sites into the environment. Chemical and Biological Technologies in Agriculture, 9, 1–20.

    Article  Google Scholar 

  • Ma, J., Sheng, G. D., & O’Connor, P. (2020). Microplastics combined with tetracycline in soils facilitate the formation of antibiotic resistance in the Enchytraeus crypticus microbiome. Environmental Pollution, 264, 114689.

    Article  CAS  Google Scholar 

  • Ma, X., Zhou, X., Zhao, M., et al. (2022). Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions. Frontiers of Environmental Science & Engineering, 16, 1–12.

    Article  Google Scholar 

  • Magni, S., Binelli, A., Pittura, L., et al. (2019). The fate of microplastics in an Italian wastewater treatment plant. Science of the Total Environment, 652, 602–610.

    Article  Google Scholar 

  • Magnusson, K., & Norén, F. (2014). Screening of microplastic particles in and down-stream a wastewater treatment plant.

    Google Scholar 

  • Mahon, A. M., O’Connell, B., Healy, M. G., et al. (2017). Microplastics in sewage sludge: Effects of treatment. Environmental Science & Technology, 51, 810–818.

    Article  CAS  Google Scholar 

  • Mai, H., Thien, N. D., Dung, N. T., & Valentin, C. (2023). Impacts of microplastics and heavy metals on the earthworm Eisenia fetida and on soil organic carbon, nitrogen, and phosphorus. Environmental Science and Pollution Research, 30, 64576–64588.

    Article  CAS  Google Scholar 

  • Maity, S., Chatterjee, A., Guchhait, R., et al. (2020). Cytogenotoxic potential of a hazardous material, polystyrene microparticles on Allium cepa L. Journal of Hazardous Materials, 385, 121560.

    Article  CAS  Google Scholar 

  • Mamathaxim, N., Song, W., Wang, Y., & Habibul, N. (2023). Effects of microplastics on arsenic uptake and distribution in rice seedlings (p. 862). Sci.

    Google Scholar 

  • Mao, R., Lang, M., Yu, X., Wu, R., Yang, X., & Guo, X. (2020). Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. Journal of Hazardous Materials, 393, 122515.

    Article  CAS  Google Scholar 

  • Mateos-Cárdenas, A., van Pelt, F. N. A. M., O’Halloran, J., & Jansen, M. A. K. (2021). Adsorption, uptake and toxicity of micro- and nanoplastics: Effects on terrestrial plants and aquatic macrophytes. Environmental Pollution, 284, 117183.

    Article  Google Scholar 

  • Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., & Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science & Technology, 35, 318–324.

    Article  CAS  Google Scholar 

  • Medyńska-Juraszek, A., & Jadhav, B. (2022). Influence of different microplastic forms on pH and mobility of Cu2+ and Pb2+ in soil. Molecules, 27, 1744.

    Article  Google Scholar 

  • Mintenig, S. M., Int-Veen, I., Löder, M. G. J., et al. (2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research, 108, 365–372.

    Article  CAS  Google Scholar 

  • Moeck, C., Davies, G., Krause, S., & Schneidewind, U. (2023). Microplastics and nanoplastics in agriculture—A potential source of soil and groundwater contamination? Grundwasser, 28, 23–35.

    CAS  Google Scholar 

  • Möhrke, A. C. F., Haegerbaeumer, A., Traunspurger, W., & Höss, S. (2022). Underestimated and ignored? The impacts of microplastic on soil invertebrates—Current scientific knowledge and research needs. Frontiers in Environmental Science, 10, 1498.

    Article  Google Scholar 

  • Mungai, T. M., Owino, A. A., Makokha, V. A., et al. (2016). Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, eastern Africa. Environmental Science and Pollution Research, 23, 18533–18541.

    Article  CAS  Google Scholar 

  • Naderi Beni, N., Karimifard, S., Gilley, J., et al. (2023). Higher concentrations of microplastics in runoff from biosolid-amended croplands than manure-amended croplands. Communications Earth & Environment, 4, 42.

    Article  Google Scholar 

  • Nizzetto, L., Futter, M., & Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? Environmental Science & Technology, 50, 10777–10779.

    Article  CAS  Google Scholar 

  • Obinnaa, I. B., & Ebere, E. C. (2019). A review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. Analytical Methods in Environmental Chemistry Journal, 2, 5–38.

    Article  Google Scholar 

  • Ofori, S., Puškáčová, A., Růžičková, I., & Wanner, J. (2021). Treated wastewater reuse for irrigation: Pros and cons. Science of the Total Environment, 760, 144026.

    Article  CAS  Google Scholar 

  • Okeke, E. S., Chukwudozie, K. I., Addey, C. I., et al. (2023). Micro and nanoplastics ravaging our agroecosystem: A review of occurrence, fate, ecological impacts, detection, remediation, and prospects. Heliyon, 9, e13296.

    Article  Google Scholar 

  • Ozturk, I., Ozkul, F., & Topuz, E. (2023). The effect of polystyrene microplastic and biosolid application on the toxicity and bioaccumulation of cadmium for Enchytraeus crypticus. Integrated Environmental Assessment and Management, 19, 489–500.

    Article  Google Scholar 

  • Panara, A. M. (2018). Uncovering the super-plant: Improving domestic water reuse. In 2018 IEEE global humanitarian technology conference (GHTC) (pp. 1–7). IEEE.

    Google Scholar 

  • Pinto-Poblete, A., Retamal-Salgado, J., López, M. D., et al. (2022). Combined effect of microplastics and cd alters the enzymatic activity of soil and the productivity of strawberry plants. Plants, 11, 536.

    Article  CAS  Google Scholar 

  • Purwiyanto, A. I. S., Suteja, Y., Trisno Ningrum, P. S., Putri, W. A. E., Rozirwan Agustriani, F., Fauziyah Cordova, M. R., & Koropitan, A. F. (2020). Concentration and adsorption of Pb and cu in microplastics: Case study in aquatic environment. Marine Pollution Bulletin, 158, 111380.

    Article  CAS  Google Scholar 

  • Qiao, R., Lu, K., Deng, Y., Ren, H., & Zhang, Y. (2019). Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish. Science of the Total Environment, 682, 128–137.

    Article  CAS  Google Scholar 

  • Ramos, L., Berenstein, G., Hughes, E. A., et al. (2015). Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Science of the Total Environment, 523, 74–81.

    Article  CAS  Google Scholar 

  • Refaey, Y., Jansen, B., El-Shater, A.-H., El-Haddad, A. A., & Kalbitz, K. (2014). The role of dissolved organic matter in adsorbing heavy metals in clay-rich soils. Vadose Zone Journal, 13, 7.

    Article  Google Scholar 

  • Ren, X., Tang, J., Liu, X., & Liu, Q. (2020). Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environmental Pollution, 256, 113347.

    Article  CAS  Google Scholar 

  • Ren, Z., Gui, X., Xu, X., et al. (2021). Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants – A critical review. Journal of Hazardous Materials, 419, 126455.

    Article  CAS  Google Scholar 

  • Richard, H., Carpenter, E. J., Komada, T., Palmer, P. T., & Rochman, C. M. (2019). Biofilm facilitates metal accumulation onto microplastics in estuarine waters. Science of the Total Environment, 683, 600–608.

    Article  CAS  Google Scholar 

  • Rillig, M. C., Ingraffia, R., & De Souza Machado, A. A. (2017a). Microplastic incorporation into soil in agroecosystems. Frontiers in Plant Science, 8, 8–11.

    Article  Google Scholar 

  • Rillig, M. C., Ziersch, L., & Hempel, S. (2017b). Microplastic transport in soil by earthworms. Scientific Reports, 7, 1362.

    Article  Google Scholar 

  • Rodriguez-Seijo, A., Lourenço, J., Rocha-Santos, T. A. P., et al. (2017). Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 220, 495–503.

    Article  CAS  Google Scholar 

  • Saeedi, M., Li, L. Y., & Grace, J. R. (2018). Effect of organic matter and selected heavy metals on sorption of acenaphthene, fluorene and fluoranthene onto various clays and clay minerals. Environment and Earth Science, 77, 1–12.

    Article  CAS  Google Scholar 

  • Schwabl, P., Koppel, S., Konigshofer, P., et al. (2019). Detection of various microplastics in human stool: A prospective case series. Annals of Internal Medicine, 171, 453–457.

    Article  Google Scholar 

  • Selonen, S., Dolar, A., Jemec Kokalj, A., et al. (2020). Exploring the impacts of plastics in soil – The effects of polyester textile fibers on soil invertebrates. Science of the Total Environment, 700, 134451.

    Article  CAS  Google Scholar 

  • Shoushtarian, F., & Negahban-Azar, M. (2020). World wide regulations and guidelines for agriculturalwater reuse: A critical review. Water, 12, 25.

    Article  Google Scholar 

  • Soleimani, H., Mansouri, B., Kiani, A., et al. (2023). Ecological risk assessment and heavy metals accumulation in agriculture soils irrigated with treated wastewater effluent, river water, and well water combined with chemical fertilizers. Heliyon, 9, 3.

    Article  Google Scholar 

  • Song, Y., Cao, C., Qiu, R., et al. (2019). Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environmental Pollution, 250, 447–455.

    Article  CAS  Google Scholar 

  • Stubenrauch, J., & Ekardt, F. (2020). Plastic pollution in soils: Governance approaches to foster soil health and closed nutrient cycles. Environments – MDPI, 7, 1–18.

    Google Scholar 

  • Sun, X. D., Yuan, X. Z., Jia, Y., et al. (2020). Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology, 15, 755–760.

    Article  CAS  Google Scholar 

  • Sungur, A., Soylak, M., & Ozcan, H. (2014). Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: Relationship between soil properties and heavy metals availability. Chemical Speciation and Bioavailability, 26, 219–230.

    Article  Google Scholar 

  • Szewc, K., Graca, B., & Dołęga, A. (2021). Atmospheric deposition of microplastics in the coastal zone: Characteristics and relationship with meteorological factors. Science of the Total Environment, 761, 143272.

    Google Scholar 

  • Tan, M., Liu, L., Zhang, M., et al. (2021). Effects of solution chemistry and humic acid on the transport of polystyrene microplastics in manganese oxides coated sand. Journal of Hazardous Materials, 413, 125410.

    Article  CAS  Google Scholar 

  • Tang, S., Lin, L., Wang, X., Feng, A., & Yu, A. (2020). Pb(II) uptake onto nylon microplastics: Interaction mechanism and adsorption performance. Journal of Hazardous Materials, 386, 121960.

    Article  CAS  Google Scholar 

  • Tang, S., Lin, L., Wang, X., Yu, A., & Sun, X. (2021). Interfacial interactions between collected nylon microplastics and three divalent metal ions (cu(II), Ni(II), Zn(II)) in aqueous solutions. Journal of Hazardous Materials, 403, 123548.

    Article  CAS  Google Scholar 

  • Teng, J., Zhao, J., Zhu, X., et al. (2021). Toxic effects of exposure to microplastics with environmentally relevant shapes and concentrations: Accumulation, energy metabolism and tissue damage in oyster Crassostrea gigas. Environmental Pollution, 269, 116169.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Tian, L., Jinjin, C., Ji, R., et al. (2022). Microplastics in agricultural soils: Sources, effects, and their fate. Current Opinion in Environmental Science & Health, 25, 100311.

    Article  Google Scholar 

  • Turner, A., & Holmes, L. A. (2015). Adsorption of trace metals by microplastic pellets in fresh water. Environment and Chemistry, 12, 600–610.

    Article  CAS  Google Scholar 

  • Ulutuğ, F. C., & Topuz, E. (2022). Mikroplastik ve Biyokatı Varlığında Toprakta Nikel Toksisitesinin Belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12, 1386–1394.

    Article  Google Scholar 

  • Ungureanu, N., Vlăduț, V., & Voicu, G. (2020). Water scarcity and wastewater reuse in crop irrigation. Sustainability, 12, 1–19.

    Article  Google Scholar 

  • van den Berg, P., Huerta-Lwanga, E., Corradini, F., & Geissen, V. (2020). Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution, 261, 114198.

    Article  Google Scholar 

  • Wahl, A., Le Juge, C., Davranche, M., et al. (2021). Nanoplastic occurrence in a soil amended with plastic debris. Chemosphere, 262, 127784.

    Article  CAS  Google Scholar 

  • Wang, X., Chen, T., Ge, Y., & Jia, Y. (2008). Studies on land application of sewage sludge and its limiting factors. Journal of Hazardous Materials, 160, 554–558.

    Article  CAS  Google Scholar 

  • Wang, J., Peng, J., Tan, Z., Gao, Y., Zhan, Z., Chen, Q., & Cai, L. (2017). Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere, 171, 248–258.

    Article  CAS  Google Scholar 

  • Wang, H. T., Ding, J., Xiong, C., et al. (2019a). Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environmental Pollution, 251, 110–116.

    Article  CAS  Google Scholar 

  • Wang, J., Liu, X., Li, Y., et al. (2019b). Microplastics as contaminants in the soil environment: A mini-review. Science of the Total Environment, 691, 848–857.

    Article  CAS  Google Scholar 

  • Wang, F., Zhang, X., Zhang, S., et al. (2020a). Effects of co-contamination of microplastics and cd on plant growth and cd accumulation. Toxics, 8.

    Google Scholar 

  • Wang, T., Wang, L., Chen, Q., Kalogerakis, N., Ji, R., & Ma, Y. (2020b). Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. Science of the Total Environment, 748, 142427.

    Article  CAS  Google Scholar 

  • Wang, F., Wang, X., & Song, N. (2021a). Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. Science of the Total Environment, 784, 147133.

    Article  CAS  Google Scholar 

  • Wang, Z., Fu, D., Gao, L., et al. (2021b). Aged microplastics decrease the bioavailability of coexisting heavy metals to microalga Chlorella vulgaris. Ecotoxicology and Environmental Safety, 217.

    Google Scholar 

  • Wang, F., Feng, X., Liu, Y., et al. (2022a). Micro(nano)plastics and terrestrial plants: Up-to-date knowledge on uptake, translocation, and phytotoxicity. Resources, Conservation & Recycling Advances, 185, 106503.

    Article  CAS  Google Scholar 

  • Wang, F., Wang, Q., Adams, C. A., Sun, Y., & Zhang, S. (2022b). Effects of microplastics on soil properties: Current knowledge and future perspectives. Journal of Hazardous Materials, 424, 127531.

    Article  CAS  Google Scholar 

  • Wei, B., Yu, J., Cao, Z., et al. (2020). The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application. International Journal of Environmental Research and Public Health, 17, 1–13.

    Article  Google Scholar 

  • Wijesekara, H., Bolan, N. S., Thangavel, R., et al. (2017). The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil. Chemosphere, 189, 565–573.

    Article  CAS  Google Scholar 

  • Wright, S. L., Ulke, J., Font, A., et al. (2020). Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environment International, 136, 105411.

    Article  CAS  Google Scholar 

  • Wu, X., Lyu, X., Li, Z., et al. (2020). Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type. Science of the Total Environment, 707, 136065.

    Article  CAS  Google Scholar 

  • Xu, J., Tan, W., Xiong, J., Wang, M., Fang, L., & Koopal, L. K. (2016). Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra. Journal of Colloid and Interface Science, 473, 141–151.

    Article  CAS  Google Scholar 

  • Xu, C., Zhang, B., Gu, C., et al. (2020). Are we underestimating the sources of microplastic pollution in terrestrial environment? Journal of Hazardous Materials, 400, 123228.

    Article  CAS  Google Scholar 

  • Xu, G., Lin, X., & Yu, Y. (2023). Different effects and mechanisms of polystyrene micro- and nano-plastics on the uptake of heavy metals (cu, Zn, Pb and cd) by lettuce (Lactuca sativa L.). Environmental Pollution, 316, 120656.

    Article  CAS  Google Scholar 

  • Yu, H., Hou, J., Dang, Q., Cui, D., Xi, B., & Tan, W. (2020). Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels. Journal of Hazardous Materials, 395, 122690.

    Article  CAS  Google Scholar 

  • Yu, Y., Griffin-LaHue, D. E., Miles, C. A., et al. (2021). Are micro- and nanoplastics from soil-biodegradable plastic mulches an environmental concern? Journal of Hazardous Materials Advances, 4, 100024.

    Article  CAS  Google Scholar 

  • Yuan, J., Ma, J., Sun, Y., et al. (2020). Microbial degradation and other environmental aspects of microplastics/plastics. Science of the Total Environment, 715, 136968.

    Article  CAS  Google Scholar 

  • Yuan, X., Xue, N., & Han, Z. (2021). A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. Journal of Environmental Sciences (China), 101, 217–226.

    Article  CAS  Google Scholar 

  • Yue, Y., Li, X., Wei, Z., et al. (2023). Recent advances on multilevel effects of micro(Nano)plastics and coexisting pollutants on terrestrial soil-plants system. Sustainability, 15, 4504.

    Article  CAS  Google Scholar 

  • Zhang, H., Pap, S., Taggart, M. A., Boyd, K. G., James, N. A., & Gibb, S. W. (2020a). A review of the potential utilisation of plastic waste as adsorbent for removal of hazardous priority contaminants from aqueous environments. Environmental Pollution, 258, 113698.

    Article  CAS  Google Scholar 

  • Zhang, S., Han, B., Sun, Y., & Wang, F. (2020b). Microplastics influence the adsorption and desorption characteristics of cd in an agricultural soil. Journal of Hazardous Materials, 388, 121775.

    Article  CAS  Google Scholar 

  • Zhang, H., Huang, Y., An, S., & Zhu, Z. (2022). A review of microplastics in soil: Distribution within pedosphere compartments, environmental fate, and effects. Water, Air, and Soil Pollution, 233, 380.

    Article  CAS  Google Scholar 

  • Zhang, J., Liu, K., He, X., et al. (2023). Evaluation of heavy metal contamination of soil and the health risks in four potato-producing areas. Frontiers in Environmental Science, 11, 1071353.

    Article  Google Scholar 

  • Zhao, K., Zhang, L., Dong, J., et al. (2020). Risk assessment, spatial patterns and source apportionment of soil heavy metals in a typical Chinese hickory plantation region of southeastern China. Geoderma, 360, 114011.

    Article  Google Scholar 

  • Zhou, Y., Liu, X., & Wang, J. (2019). Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of Central China. Science of the Total Environment, 694, 133798.

    Article  CAS  Google Scholar 

  • Zhou, H., Zhang, T., Zhuang, J., et al. (2020a). Study on the regulation of earthworm physiological function under cadmium stress based on a compound mathematical model. Environmental Toxicology and Pharmacology, 80, 103499.

    Article  CAS  Google Scholar 

  • Zhou, Y., Liu, X., & Wang, J. (2020b). Ecotoxicological effects of microplastics and cadmium on the earthworm Eisenia foetida. Journal of Hazardous Materials, 392, 122273.

    Article  CAS  Google Scholar 

  • Zhou, C. Q., Lu, C. H., Mai, L., et al. (2021). Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. Journal of Hazardous Materials, 401, 123412.

    Article  CAS  Google Scholar 

  • Zhou, W., Wang, Q., Wei, Z., et al. (2023). Effects of microplastic type on growth and physiology of soil crops: Implications for farmland yield and food quality. Environmental Pollution, 326, 121512.

    Article  CAS  Google Scholar 

  • Ziajahromi, S., Neale, P. A., Telles Silveira, I., et al. (2021). An audit of microplastic abundance throughout three Australian wastewater treatment plants. Chemosphere, 263, 128294.

    Article  CAS  Google Scholar 

  • Zong, X., Zhang, J., Zhu, J., et al. (2021). Effects of polystyrene microplastic on uptake and toxicity of copper and cadmium in hydroponic wheat seedlings (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 217, 112217.

    Article  CAS  Google Scholar 

  • Zou, J., Liu, X., Zhang, D., & Yuan, X. (2020a). Adsorption of three bivalent metals by four chemical distinct microplastics. Chemosphere, 248, 126064.

    Article  CAS  Google Scholar 

  • Zou, L., Gusnawan, P., Zhang, G. S., et al. (2020b). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. Environmental Pollution, 50, 25–32.

    Google Scholar 

Download references

Acknowledgments

This work was supported by generous grants from the Scientific and Technological Research Council of Turkey under the TUBITAK 2247‐A Fellowship for Outstanding Researchers (no. 120C147). However, all scientific contributions made in this project are owned and approved solely by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Ayral-Çınar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ceylan, E., Bartan, D.B., Öztürk-Ufuk, İ., Topuz, E., Ayral-Çınar, D. (2024). Interactıon of Micro-Nanoplastics and Heavy Metals in Soil Systems: Mechanism and Implication. In: Bhat, S.A., Kumar, V., Li, F., Kumar, S. (eds) Management of Micro and Nano-plastics in Soil and Biosolids. Springer, Cham. https://doi.org/10.1007/978-3-031-51967-3_7

Download citation

Publish with us

Policies and ethics