Skip to main content

Microplastics: An Emerging Environmental Issue—Its Bioremediation, Challenges, and a Future Perspective

  • Chapter
  • First Online:
Management of Micro and Nano-plastics in Soil and Biosolids

Abstract

Microplastics are less than 5 mm in diameter, composed of various chemical constituents, and come from numerous sources. Because of wide use and irrational disposal of plastics, microplastics have become a major environmental problem on a global scale. Increasing level of microplastics in the ecosystem is causing undesirable impacts on the terrestrial and marine ecosystem. Therefore, the application of a novel methodology to remove microplastics from the environment has become essential. Bioremediation is regarded as an eco-friendly and greener remediation method among some commonly used ones for microplastics. Numerous biotic and abiotic variables frequently have an impact on the bioremediation of plastics. It is essential to understand the key pathways that living things use in order to use plastic fragments as their only source of carbon for development and growth. In this context, the authors have discussed the different sources of microplastics, the effect of microplastics on ecosystem, and the role of microbes in biodegradation of microplastics present in the environment. Additionally, this chapter advances knowledge of how microplastics behave in ecosystems and offers a theoretical framework for more accurate evaluation of the ecological and environmental risks associated with microplastics, as well as their opportunities, challenges, and prospective research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An, L., Liu, Q., Deng, Y., Wu, W., Gao, Y., & Ling, W. (2020). Sources of microplastic in the environment. In D. He & Y. Luo (Eds.), Microplastics in terrestrial environments. The handbook of environmental chemistry (Vol. 95). Springer.

    Google Scholar 

  • Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Screening of bacillus strains isolated from mangrove ecosystems in peninsular Malaysia for microplastic degradation. Environmental Pollution, 231, 1552–1559.

    Article  CAS  Google Scholar 

  • Auta, H. S., Emenike, C. U., Jayanthi, B., & Fauziah, S. H. (2018). Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Pollution Bulletin, 127, 15–21.

    Article  CAS  Google Scholar 

  • Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M., & Sukumaran, S. (2020). Plastic rain in protected areas of the United States. Science (New York, N.Y.), 368(6496), 1257–1260.

    Article  CAS  Google Scholar 

  • Chaudhary, A. K., & Vijayakumar, R. P. (2020). Studies on biological degradation of polystyrene by pure fungal cultures. Environment, Development and Sustainability, 22(5), 4495–4508.

    Article  Google Scholar 

  • Chen, H., Wang, Y., Sun, X., Peng, Y., & Xiao, L. (2020). Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere, 243, 125271.

    Article  CAS  Google Scholar 

  • Chen, J., Wan, J., Gong, Y., Xu, K., Zhang, H., Chen, L., Liu, J., & Liu, C. (2021). Effective electro-Fenton-like process for phenol degradation on cerium oxide hollow spheres encapsulated in porous carbon cathode derived from skimmed cotton. Chemosphere, 270, 128661.

    Article  CAS  Google Scholar 

  • Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., & Geissen, V. (2019). Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. The Science of the Total Environment, 671, 411–420.

    Article  CAS  Google Scholar 

  • Du, H., Xie, Y., & Wang, J. (2021). Microplastic degradation methods and corresponding degradation mechanism: Research status and future perspectives. Journal of Hazardous Materials, 418, 126377.

    Article  CAS  Google Scholar 

  • Feng, H. M., Zheng, J. C., Lei, N. Y., Yu, L., Kong, K. H., Yu, H. Q., Lau, T. C., & Lam, M. H. (2011). Photoassisted Fenton degradation of polystyrene. Environmental Science & Technology, 45(2), 744–750.

    Article  CAS  Google Scholar 

  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.

    Article  Google Scholar 

  • Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179–199.

    Article  CAS  Google Scholar 

  • Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science & Technology, 46(6), 3060–3075.

    Article  CAS  Google Scholar 

  • Hodges, B. C., Cates, E. L., & Kim, J. H. (2018). Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nature Nanotechnology, 13(8), 642–650.

    Article  CAS  Google Scholar 

  • Jiang, R., Lu, G., Yan, Z., Liu, J., Wu, D., & Wang, Y. (2021). Microplastic degradation by hydroxy-rich bismuth oxychloride. Journal of Hazardous Materials, 405, 124247.

    Article  CAS  Google Scholar 

  • Kang, J., Zhou, L., Duan, X., Sun, H., Ao, Z., & Wang, S. (2019). Degradation of cosmetic microplastics via functionalized carbon Nanosprings. Matter, 1(3), 745–758.

    Article  CAS  Google Scholar 

  • Leslie, H. A., Brandsma, S. H., van Velzen, M. J., & Vethaak, A. D. (2017). Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environment International, 101, 133–142.

    Article  CAS  Google Scholar 

  • Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W. J. G. M., Yin, N., Yang, J., Tu, C., & Zhang, Y. (2020). Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability, 3(11), 929–937.

    Article  Google Scholar 

  • Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., Ritsema, C. J., & Geissen, V. (2017). Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185, 907–917.

    Article  CAS  Google Scholar 

  • Liu, F., Xu, Y., Zhang, B., Liu, Y., & Zhang, H. (2020). Heterogeneous degradation of organic contaminant by peroxydisulfate catalyzed by activated carbon cloth. Chemosphere, 238, 124611.

    Article  CAS  Google Scholar 

  • Lu, Y., Li, M. C., Lee, J., Liu, C., & Mei, C. (2023). Microplastic remediation technologies in water and wastewater treatment processes: Current status and future perspectives. The Science of the Total Environment, 868, 161618.

    Article  CAS  Google Scholar 

  • Magnusson, K., Eliasson, K., Fråne, A., Haikonen, K., Hultén, J., Olshammar, M., Stadmark, J., & Voisin, A. (2016). Swedish sources and pathways for microplastics to the marine environment. Swedish Environmental Protection Agency, 183(C 183), 1–89.

    Google Scholar 

  • Miao, L., et al. (2019). Distinct community structure and microbial functions of biofilms colonizing microplastics. Science of the Total Environment, 650, 2395–2402.

    Article  CAS  Google Scholar 

  • Miao, F., Liu, Y., Gao, M., Yu, X., Xiao, P., Wang, M., Wang, S., & Wang, X. (2020). Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. Journal of Hazardous Materials, 399, 123023.

    Article  CAS  Google Scholar 

  • Muhonja, C. N., Makonde, H., Magoma, G., & Imbuga, M. (2018). Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS One, 13(7), 1–17.

    Article  Google Scholar 

  • Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environmental Science & Technology, 50(11), 5800–5808.

    Article  CAS  Google Scholar 

  • NIVA. (2020). Integrated environmental assessment and management. Microplastics in road dust – Characteristics, pathways and measures REPORT SNO. 7526-2020.

    Google Scholar 

  • Orlando, M., Molla, G., Castellani, P., Pirillo, V., Torretta, V., & Ferronato, N. (2023). Microbial enzyme biotechnology to reach plastic waste circularity: Current status, problems and perspectives. International Journal of Molecular Sciences, 24(4), 3877.

    Article  CAS  Google Scholar 

  • Paço, A., et al. (2017). Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of the Total Environment, 586, 10–15.

    Article  Google Scholar 

  • Park, S. Y., & Kim, C. G. (2019). Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere, 222, 527–533.

    Article  CAS  Google Scholar 

  • Patil, S., Bafana, A., Naoghare, P. K., Krishnamurthi, K., & Sivanesan, S. (2021). Environmental prevalence, fate, impacts, and mitigation of microplastics-a critical review on present understanding and future research scope. Environmental Science and Pollution Research International, 28(5), 4951–4974.

    Article  CAS  Google Scholar 

  • Pettipas, S., Bernier, M., & Walker, T. R. (2016). A Canadian policy framework to mitigate plastic marine pollution. Marine Policy, 68, 117–122.

    Article  Google Scholar 

  • Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water. The Science of the Total Environment, 643, 1644–1651.

    Article  CAS  Google Scholar 

  • Qi, K., Cheng, B., Jiaguo, Y., & Ho, W. (2017). Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 727, 792–820.

    Article  CAS  Google Scholar 

  • Rillig, M. C., Lehmann, A., de Souza Machado, A. A., & Yang, G. (2019). Microplastic effects on plants. The New Phytologist, 223(3), 1066–1070.

    Article  Google Scholar 

  • Silva, A. B., Costa, M. F., & Duarte, A. C. (2018). Biotechnology advances for dealing with environmental pollution by micro(nano)plastics: Lessons on theory and practices. Current Opinion in Environmental Science & Health, 1, 30–35.

    Article  Google Scholar 

  • Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5(3), 375–386.

    Article  CAS  Google Scholar 

  • Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W., & Shim, W. J. (2017). Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environmental Science & Technology, 51(8), 4368–4376.

    Article  CAS  Google Scholar 

  • Sundt, P., Syversen, F., Skogesal, O., & Schulze, P.-E. (2016). Primary microplastic-pollution: Measures and reduction potentials in Norway. Mepex, (April), 117.

    Google Scholar 

  • Syranidou, E., et al. (2017). Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLoS One, 12(8), 1–21.

    Article  Google Scholar 

  • Teles, M., Balasch, J. C., Oliveira, M., Sardans, J., & Peñuelas, J. (2020). Insights into nanoplastics effects on human health. Science Bulletin, 65(23), 1966–1969.

    Article  CAS  Google Scholar 

  • United Nations Environment Programme. (2022). Visual feature | beat plastic pollution. UNEP.

    Google Scholar 

  • Wan, Y., Wu, C., Xue, Q., & Hui, X. (2019). Effects of plastic contamination on water evaporation and desiccation cracking in soil. The Science of the Total Environment, 654, 576–582.

    Article  CAS  Google Scholar 

  • Yanto, D. H. Y., et al. (2019). Biodegradation of styrofoam waste by ligninolytic fungi and bacteria. IOP Conference Series: Earth and Environmental Science, 308(1).

    Google Scholar 

  • Yi, M., Zhou, S., Zhang, L., & Ding, S. (2021). The effects of three different microplastics on enzyme activities and microbial communities in soil. Water Environment Research: A Research Publication of the Water Environment Federation, 93(1), 24–32.

    Article  CAS  Google Scholar 

  • Yin, L., Wen, X., Huang, D., Du, C., Deng, R., Zhou, Z., Tao, J., Li, R., Zhou, W., Wang, Z., & Chen, H. (2021). Interactions between microplastics/nanoplastics and vascular plants. Environmental Pollution (Barking, Essex: 1987), 290, 117999.

    Article  CAS  Google Scholar 

  • Yu, H., Fan, P., Hou, J., Dang, Q., Cui, D., Xi, B., & Tan, W. (2020). Inhibitory effect of microplastics on soil extracellular enzymatic activities by changing soil properties and direct adsorption: An investigation at the aggregate-fraction level. Environmental Pollution (Barking, Essex: 1987), 267, 115544.

    Article  CAS  Google Scholar 

  • Yu, H., Ying, Z., Wenbing, T., & Zheng, Z. (2022). Microplastics as an emerging environmental pollutant in agricultural soils: Effects on ecosystems and human health. Frontiers in Environmental Science, 10(March), 1–18.

    Google Scholar 

  • Zhang, G. S., & Zhang, F. X. (2020). Variations in aggregate-associated organic carbon and polyester microfibers resulting from polyester microfibers addition in a clayey soil. Environmental Pollution (Barking, Essex: 1987), 258, 113716.

    Article  CAS  Google Scholar 

  • Zhang, D., Ng, E. L., Hu, W., Wang, H., Galaviz, P., Yang, H., Sun, W., Li, C., Ma, X., Fu, B., Zhao, P., Zhang, F., Jin, S., Zhou, M., Du, L., Peng, C., Zhang, X., Xu, Z., Xi, B., Liu, X., & Liu, H. (2020a). Plastic pollution in croplands threatens long-term food security. Global Change Biology, 26(6), 3356–3367.

    Article  Google Scholar 

  • Zhang, F., Zhao, Y., Wang, D., Yan, M., Zhang, J., Zhang, P., Ding, T., Chen, L., & Chen, C. (2020b). Current technologies for plastic waste treatment: A review. Journal of Cleaner Production, 282, 124523.

    Article  Google Scholar 

  • Zhou, J., Yuan, W., Miles, R. M., Zhao, J., Gui, H., Yang, Y., Zeng, Z., Jones, D. L., & Zang, H. (2021). Microplastics as an emerging threat to plant and soil health in agroecosystems. Science of the Total Environment, 787, 147444.

    Article  CAS  Google Scholar 

  • Zurier, H. S., & Goddard, J. M. (2020). Biodegradation of microplastics in food and agriculture. Current Opinion in Food Science, 37, 37–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gadhvi, M.S., Vyas, S.J., Vala, A.K., Dudhagara, D.R. (2024). Microplastics: An Emerging Environmental Issue—Its Bioremediation, Challenges, and a Future Perspective. In: Bhat, S.A., Kumar, V., Li, F., Kumar, S. (eds) Management of Micro and Nano-plastics in Soil and Biosolids. Springer, Cham. https://doi.org/10.1007/978-3-031-51967-3_3

Download citation

Publish with us

Policies and ethics